
Stanford University
Computer Science Department
CS 253 Final Exam Fall 2019

December 10, 2019

This is a closed book exam. You may use two (double-sided) sheets of notes. You have 3 hours. Write
all of your answers directly on the paper. Make your answers as concise as possible.

NOTE: We will take off points if a correct answer also includes incorrect or irrelevant
information (i.e. don’t write everything you know in hopes of saying the correct buzzword.)

Question Score

True/False (14 points)

Short Answer (22 points)

Free Response (37 points)

TOTAL (73 possible points)

Stanford University Honor Code

In accordance with both the letter and the spirit of the Honor Code, I did not cheat on this exam nor will
I assist someone else in cheating.

Name and SUNet ID:

Signature:

True or False (1 point each) –
For each question, write either "True" or "False".

1. Code injection is caused when untrusted user data unexpectedly becomes code.

2. It's OK to put sensitive information in hidden form fields since, after all, they're hidden. For
example, ​<input type='hidden' name='databasePassword' value='hunter2'>​.

3. The server can trust cookie values in HTTP requests to be untampered since the cookies are
set by the server.

4. The cookie attribute ​HttpOnly​ helps to mitigate the effects of XSS attacks by preventing
client-side JavaScript from reading the cookie.

5. Your browser will save cookies even from sites you have not visited directly. ("Visited directly"
means that e.g. you navigated to the site and its URL appeared in the browser's address bar)

6. You should prefer to use a blocklist (to block known bad input and allow everything else) rather
than an allowlist (to only allow known good input and block everything else).

7. Cross-site request forgery is a type of injection attack.

8. HTML/JavaScript are the primary languages targeted by cross-site scripting attacks.

9. Reflected XSS occurs when a malicious user convinces a victim to send a request to a server
with malicious input and the server echoes the input back to client.

2

10. The best way to prevent untrusted user input from exploiting your application is to use
encryption.

11. You should set the ​Secure​ flag in a cookie to ensure that the cookie is only sent over encrypted
HTTPS connections.

12. When accepting untrusted input from the user, we should escape it ​before​ it is added to the
database so that we can later use it without worrying about escaping.

13. Two-factor authentication (a password together with a Time-based One-time Password (TOTP)
code) is an example of defense-in-depth.

14. The XSS Auditor was removed from Chrome because an attacker could use it to prevent
specific scripts within a targeted page from executing.

Short Answer (2 points each) –
For each question, write a short answer using no more than ​50 words​.

1. Name the three parts of a URL that are used to determine the URL's origin.

2. Which character is most likely to be used in a SQL injection attack? Choose from: the single
quote (​'​), the null byte, the less than sign (​<​), or the greater than sign (​>​).

3

3. You are a penetration tester evaluating a client's website for security vulnerabilities. You notice
that their authentication system chooses sequential session IDs for users. Specifically, the first
user to log in to the site gets a session ID of 1, the second user gets 2, the third user gets 3, and
so on. Describe an attack against this authentication system.

4. (Continued from previous question) The client "fixes" the issue by updating the server code so a
random number between 1 and 2​128​ is chosen at startup and used as the first session ID given
to a user. All subsequent session IDs are chosen by adding 1 to the last session ID given to a
user. For instance, if the server randomly chose 9000 as the first session ID, then the second
session ID would be 9001, and so on. Describe an attack against this authentication system.

5. Why is it a bad idea to include detailed error information (e.g. including a stack trace) in the
HTTP response when the server throws an exception?

4

6. An attacker injects an XSS payload into the HTML page sent by your server. Given the following
CSP, would the XSS attack succeed? Why or why not?

CSP: ​Content-Security-Policy: script-src 'self';

XSS: ​<script>alert(document.cookie)</script>

7. An attacker injects an XSS payload into the HTML page sent by your server. Given the following
CSP, would the XSS attack succeed? Why or why not?

CSP: ​Content-Security-Policy: script-src 'self' https://javascript-cdn.com;

XSS: ​<script src='https://javascript-cdn.com/attacker-script.js'></script>

5

8. Explain why including ​'unsafe-inline'​ in a CSP makes it almost entirely ineffective at
preventing XSS attacks.

9. Web browsers like Firefox and operating systems like macOS and Windows ship with a large
built-in list of public keys of Certificate Authorities. What are these used for?

10. Describe a server-side defense that mitigates the effects of brute force (testing multiple
passwords from a dictionary against a single account), credential stuffing (testing
username/password pairs obtained from a breach), as well as password spraying (testing a
single weak password against a large number of different accounts).

6

11. What is the difference between authentication and authorization?

Free Response (3 points each) –
For each question, write an answer using no more than ​150 words​.

1. Same Origin Policy:

Would the following code running on ​https://attacker.com​ be allowed to print out the contents of the
Axess homepage, which include the currently logged-in user's grades? Why or why not?

<script>

 const res = await fetch('https://axess.stanford.edu')

 const data = await res.body.text()

 console.log(data) // Haha, got your grades!

</script>

You can assume that ​https://axess.stanford.edu​ does ​not​ send any special HTTP headers such as
Access-Control-Allow-Origin, which are also known as "CORS" headers.

7

https://attacker.com/
https://axess.stanford.edu/

2. More Same Origin Policy:

Would the following code running on ​https://attacker.com​ be allowed to listen to the 'submit' event on
the bank's login form and grab the username and password? Why or why not?

<iframe src='https://bank.com'></iframe>

<script>

 const loginForm = window.frames[0].forms[0]

 loginForm.addEventListener('submit', () => {

 console.log(loginForm.username) // Haha, got your username...

 console.log(loginForm.password) // ...and password!

 })

</script>

3. CORS Preflight:

Explain why the browser must send an OPTIONS or "preflight" request to the server before it sends
certain HTTP requests. To help jog your memory, here is an example of an OPTIONS request:

OPTIONS /resource/foo

Access-Control-Request-Method: DELETE

Origin: https://example.com

8

https://attacker.com/

4. Cookies:

Your friend has built a personal site hosted at ​https://stanford.edu/~victim​. They have built an
authentication system so certain pages of the site can only be accessed by specific individuals. Once a
user logs in successfully, the server sends a response with a ​Set-Cookie​ HTTP header to set a
sessionId​ cookie in the user's browser.

Set-Cookie: sessionId=1234; Path=/~victim

Your friend is specifying the ​Path​ attribute on the cookie so that the cookie is scoped to the path prefix
"/~victim". This means that the cookie will be sent when the user visits ​https://stanford.edu/~victim​ or
https://stanford.edu/~victim/secret​ but not when they visit ​https://stanford.edu/~attacker​.

Explain how ​https://stanford.edu/~attacker​ can nonetheless read the sessionId cookie that was scoped
to the victim's site.

9

https://stanford.edu/~victim
https://stanford.edu/~victim
https://stanford.edu/~victim/secret
https://stanford.edu/~attacker
https://stanford.edu/~attacker

5. More Cookies:

An attacker includes the following HTML in their site hosted at ​https://attacker.com​ which makes a GET
request to a vulnerable bank server and transfers money into the attacker's account.

The attacker is hoping the user is already authenticated with the bank site before they visit
https://attacker.com​ and send the above GET request to the bank. The attacker entices users to visit
their site by including hundreds of cute kittens like these ones:

Explain how the bank can modify their server code to protect users from this attack.

10

https://attacker.com/
https://attacker.com/

6. XSS:

The following Express route handler implements the homepage of the site at
https://insecure.example.com​ but it is vulnerable to reflected XSS.

app.get('/', (req, res) => {

 let welcomeMessage = 'Welcome to our site!'

 if (req.query.source) {

 welcomeMessage = `Welcome ${req.query.source} reader!`

 }

 res.send(`

 <h1>${welcomeMessage}</h1>

 <p>This site uses top-of-the-line security and encryptions!!!1</p>

 `)

})

Recall that the ​req.query​ property in Express is an object containing a property for each query string
parameter in the route. For example, if the user visits ​https://insecure.example.com/?name=zelda​, then
the value of ​req.query​ will be ​{ name: 'zelda' }​. If there is no query string, it is the empty object,
{}​.

Describe the XSS vulnerability in the code and provide a URL which an attacker could get a victim to
visit in order to pull off a reflected XSS attack against them. The URL you provide should execute the
following code: ​alert(document.cookie)​.

11

https://insecure.example.com/
https://insecure.example.com/?name=zelda

7. More XSS:

The following Express route handler implements the logic for the login form of
https://insecure.example.com​ but it is vulnerable to reflected XSS.

app.post('/login', (req, res) => {

 const { username, password } = req.body

 if (isAuthValid(username, password)) {

 res.send(`

 <h1>Welcome logged in user!</h1>

 <script>

 let username = '${jsStringEscape(username)}'

 alert('Hi there, ' + username)

 </script>

 `)

 } else {

 res.send('Invalid username or password!')

 }

})

// Escape a string so it can safely be used inside a JavaScript string within

// a <script> tag in an HTML page.

function jsStringEscape (str) {

 return str

 .replace(/'/g, "\\'") // Replace all ' with \'

 .replace(/"/g, '\\"') // Replace all " with \"

}

// Returns true if the given login credentials are valid. False, otherwise.

function isAuthValid (username, password) {

 // implementation omitted...

}

Describe the XSS vulnerability in the code and provide a URL which an attacker could get a victim to
visit in order to pull off a reflected XSS attack against them. The URL you provide should execute the
following code: ​alert(document.cookie)​.

Hint:​ Take a close look at the ​jsStringEscape​ function – it doesn't escape all the necessary
characters!

Another hint:​ Think about what the final HTML page will look like with different possible username
values!

Another, another hint:​ There are actually two vulnerabilities, but you only need to find one of them.

12

https://insecure.example.com/

(Continued…) 7. More XSS:

13

8. CSP:

The given CSP is applied to the given HTML page. Specify which resources, if any, will be ​blocked​ from
loading by the CSP. There may be more than one.

CSP: ​Content-Security-Policy: default-src 'none'; script-src 'self'
https://partner.example.com; img-src 'self' https://images.example.com; style-src

'self';

HTML:
<!doctype html>

<html lang='en'>

 <head>

 <link rel='stylesheet' href='/style.css' />

 <link rel='stylesheet' href='https://stylish.example.com/style.css' />

 </head>

 <body>

 <script>alert('We have only the BEST memes!')</script>

 <h1>Top memes:</h1>

 <script src='/bundle.js'></script>

 <script src='https://partner.example.com/analytics.js'></script>

 </body>

</html>

14

9. HSTS Preload:

An attacker performed a DNS hijacking attack against your domain name. The attacker changed your
domain's A record to point to their server IP address instead of yours. (Web browsers use the DNS A
record to translate domain names to IP addresses). With the attacker in control of the DNS responses
that your site visitors receive, their browsers will be directed to connect to the attacker's server instead
of yours. Fortunately, your site is served using TLS and your site is loaded into the HTTPS Strict
Transport Security (HSTS) Preload List.

Explain how TLS and HSTS Preload protects visitors to your site from this attack.

15

10. Command injection:

The following Node.js program implements an HTTP server which accepts a user-provided filename
and returns the contents of the specified file to the user, if it exists on the server. The file should only be
returned if it exists in a folder named "static" where static files intended for viewing are stored.

const express = require('express')

const childProcess = require('child_process')

const app = express()

app.get('/', (req, res) => {

 res.send(`

 <h1>File viewer</h1>

 <form method='GET' action='/view'>

 <input name='filename' />

 <input type='submit' value='Submit' />

 </form>

 `)

})

app.get('/view', (req, res) => {

 const { filename } = req.query

 try {

 const stdout = childProcess.execSync('cat static/' + filename)

 // command succeeded, file exists

 res.send(stdout.toString())

 } catch (err) {

 // command failed, file does not exist

 res.send(err.toString())

 }

})

app.listen(4000, '127.0.0.1')

Recall, the ​execSync​ function takes one or more commands to run, and runs them. If the command
succeeds, the function returns the standard output. Otherwise, it throws an exception.

Also recall, the ​cat​ program reads files sequentially, writing them to standard output. For example, the
command ​cat file.txt​ will cause the contents of file.txt to be printed to the terminal.

Here's an example request and response interaction with this server.

(Continued on next page…)

16

(Continued…)​ ​10. Command injection

Request:

GET /view?filename=hello.txt HTTP/1.1

Host: localhost:4000

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_1)

Response:

HTTP/1.1 200 OK

Content-Type: text/html; charset=utf-8

Date: Tue, 10 Dec 2019 00:00:00 GMT

Hello, world!

There is a glaring security vulnerability in this server. What is the issue? How could the issue be fixed?

Hint:​ There are actually two security vulnerabilities, but you only need to find one of them.

17

11. Fingerprinting:

List three unique attributes of a user's browser that a fingerprinting script could use to persistently
identify the user even if they clear their cookies and other site data.

12. Logic bug:

The route handler below implements the "delete account" functionality which is common on most
websites. This allows the user to completely delete their account. The actual deletion logic is in the
deleteAccount​ function, which is not shown here. To confirm that the request came from the actual
user, the request must include the user's password which is validated before the account is deleted.

app.get('/delete', (req, res) => {

 const { username, password } = req.body

 if (!isAuthValid(username, password)) {

 res.send('Invalid username or password.')

 }

 deleteAccount(username)

 res.send('Account deleted.')

})

There are two severe security issues in the route handler. Identify the two issues.

18

(Continued…) 12. Logic bug:

13. Winter break (1 point):

What are you most looking forward to doing during the winter break?

Have an amazing winter break!

19

