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Abstract

This paper studies a New Keynesian model with a banking system. The central bank
targets the interest rate on short safe bonds that are held by banks to back inside money
and hence earn convenience yield for their safety or liquidity. Central bank operating
procedures matter. In a floor system, the reserve rate and the quantity of reserves are
independent policy tools that affect banks’ cost of safety. In a corridor system, increasing
the interbank rate by making reserves scarce increases banks’ cost of liquidity and generates
strong pass-through to other rates of return, output and inflation. In either system, policy
rules that do not respond aggressively to inflation – such as an interest rate peg – need not
lead to self-fulfilling fluctuations. The stabilizing effect from an endogenous convenience
yield is stronger when there are more nominal rigidities in bank balance sheets.
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1 Introduction

This paper is motivated by two familiar facts on money and banking. The first is the "short rate
disconnect": interest rates on short safe bonds targeted by central banks are not well accounted
for by asset pricing models that fit expected returns on other assets such as long terms bonds or
stocks. A related fact is that short safe bonds that earn policy interest rates, such as overnight
interbank loans and central bank reserves, are predominantly held by intermediaries.1 The
second fact is the existence of a stable and relative inelastic money demand schedule for
appropriately defined broad money balances (for example, Lucas and Nicolini (2015), Benati
et al. 2021). In particular, estimated elasticities of money demand are far below conventional
numbers for the intertemporal elasticity of substitution (IES).

The textbook New Keynesian model is not consistent with both facts on bonds and money.
On the one hand, it identifies the policy rate with households’ rate of return on savings, or the
short rate in households’ stochastic discount factor. In other words, it imposes perfect pass-
through from the policy rate to all other rates in the economy, thus giving the central bank a
powerful lever to affect intertemporal decisions. On the other hand, microfoundations for the
textbook model assume that either (i) the economy operates at a "cashless limit", so the model
does not speak to the role of the quantity of money or (ii) utility is separable in consumption
and real balances, which implies an elasticity of money demand as high as the IES.

This paper studies a New Keynesian model with a banking system that features both a
short rate disconnect and a stable, inelastic money demand schedule. To capture the role of
money as a medium of exchange, real inside money balances created by banks enter utility
as a complement to consumption. A short rate disconnect arises because short safe bonds
are held by banks to back inside money – the convenience yield on those bonds reflect their
benefit as safe collateral. We show how in such a world the "plumbing" of the economy – the
nature of payment flows – as well as the structure and assets of the banking system matter for
the transmission of monetary policy. Moreover, the precise operating procedures of the central
bank – such as whether it adopts a corridor or a floor system – are important for what policy
tools are available and how policy can avoid self-fulfilling fluctuations.

According to our model, the standard New Keynesian setup approximates policy transmis-
sion via banks fairly well when the central bank runs a corridor system with a fixed interest
rate on reserves, that is, it supplies reserves elastically to hit a target for the interbank loan
rate, as the Fed did prior to the 2008 financial crisis. With this operating procedure, policy

1The short rate disconnect has been a stylized fact in the empirical literature on the term structure of interest
rates since Duffee (1996). Lenel, Piazzesi and Schneider (2019) provide evidence of its connection to bank balance
sheets.
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works mostly through banks’ cost of liquidity, defined as the spread between the interbank
rate and the reserve rate, both set by the central bank. The quantity of reserves is adjusted by
the central bank trading desk to implement its desired spread; it plays no independent role as
a policy instrument. While the short rate disconnect implies that pass-through from the pol-
icy rate to the interest rate on savings is imperfect, it is relatively strong at typical parameter
values, because banks’ supply of inside money is sensitive to their cost of liquidity.

When the central bank varies the interest rate on reserves, however, the standard model
does not provide a good abstraction for how monetary policy works, for two reasons. First,
raising interest rates does not require a decline in the quantity of reserves, which instead
serves as an independent policy instrument. In particular, the central bank in our model can
run a floor system with ample reserves, as many central banks have done over the last decade.
Here the central bank supplies a quantity of reserves that is much larger than what banks
require for liquidity management. The interbank loan market then shuts down and there is a
single short bond rate, set by the central bank. Banks value reserves only as collateral to back
inside money, not for their liquidity. A reduction of reserves, for example through unwinding
an asset purchase program, is contractionary because it lowers the average quality of bank
collateral, even if interest rate policy does not change.

A second key difference between a floor system and the standard model is that interest rate
policy in a floor system no longer works through banks’ cost of liquidity – which is constant
at zero – but instead through banks’ cost of safe collateral, measured by the spread between
the interest rate on savings and the interest rate on reserves. A higher policy rate therefore
does not make liquidity more expensive, but instead makes safe collateral cheaper, which
lowers banks’ cost of providing money. The difference between these alternative transmission
mechanisms is particularly pronounced when money and consumption are complements. In
the standard model, a higher cost of producing money feeds through to the cost of producing
output thereby generates a strong contractionary effect of monetary tightening on output. In
our banking model, cheaper collateral dampens this effect, so interest rate policy is much less
powerful.

As an alternative setup without banks that approximates policy transmission with variable
interest on reserves, we suggest a simple tweak to the standard model: equate the policy rate
with the interest rate on money rather than the interest rate on savings. In other words, we
consider a hypothetical world where the government offers interest-bearing central bank digi-
tal currency (CBDC). We show that this CBDC model captures the key elements of our banking
model with variable interest on reserves. The simplification is that interest rate policy directly
affects households’ cost of liquidity, rather than indirectly through the convenience yield on
short safe bonds that back money. The CBDC model also features two policy instruments, and
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dampening of interest policy relative to the standard model. It becomes closer to the standard
model as the elasticity of money demand increases. 2

Our results follow from a familiar set of assumptions on the role of money and banking in
the economy. First, inside money issued by banks earns a convenience yield for its liquidity,
measured by the spread between the interest rate on savings and the interest rate on money:
households’ cost of liquidity. Second, banks face leverage constraints, because inside money
must be backed by collateral. Importantly, both households’ cost of liquidity and banks’ cost
of safety - spread between the rate on savings and the rate on reserves – is always positive,
even in a floor systems when banks’ cost of liquidity is zero. Third, inside money is liquid
so heterogeneous banks are subject to sudden in- and outflows of money as they process cus-
tomers’ payment instructions. Finally, pass-through from the policy rate to other rates occurs
because total risk-adjusted expected returns – pecuniary expected returns plus convenience
yields – on all assets are equated in equilibrium.

We characterize the macro dynamics of our model by a difference equation that is a simple
extension of the familiar three New Keynesian equations. Behavior of the nonbank private
sector is summarized by a New Keynesian Phillips curve as well as an intertemporal Euler
equation. Since we allow for complementarity between money and consumption, the cost
of production reflects in part households’ cost of liquidity, as in models of the cost channel
of monetary policy. A third equation is a standard money demand relationship that relates
real balances to households’ cost of liquidity. Two additional equations summarize aggregate
prices and quantities of bonds and money that are consistent with (partial) equilibrium in
fixed income markets: banks price households’ cost of liquidity at a constant markup over
marginal cost, and supply a quantity constrained by available collateral. The plumbing as well
as policy shapes the parameters of these equations and hence the transmission mechanism.

To see how endogenous convenience yields affect the transmission of interest rate policy
under our assumptions, suppose the central bank raises the interest rate on short safe bonds
held by banks: it raises the target for the interbank rate in a corridor system, or the interest rate
on reserves in a floor system. Standard New Keynesian logic says that nominal rigidities imply
a higher real short rate and lower nominal spending. However, lower nominal spending lowers
the convenience yield on inside money and hence on short safe bonds that back inside money,
be they interbank loans or reserves. The overall return on safe short bonds therefore does not
increase as much as the policy rate itself. Since pass-through to other interest rates occurs to

2The logic of the CBDC model is relevant not only when the central bank runs a floor system, but whenever
policy moves the interest rate on reserves without changing banks’ cost of liquidity. For example, a system with
a fixed size corridor such that the reserve rate moves in lockstep with the target for the interbank rate, so the cost
of liquidity is constant at a positive spread, behaves similarly to a floor system.
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equate total risk adjusted returns, the response of the convenience yield to spending dampens
the policy impact on output and inflation. The effect works through the value of bonds as
collateral–banks’ cost of safety–and is thus present in both floor and corridor systems.

In contrast to the standard model, our model says that interest rate rules that do not
aggressively respond to inflation need not make the economy susceptible to self-fulfilling
fluctuations. Consider for example an interest rate peg. Can there be a self-fulfilling recession?
If agents believe that output is temporarily low, inflation slows as firms anticipate lower cost.
With a pegged nominal rate, the real rate increases. In the standard model, the expected real
return on all assets increases: lower demand makes the recessionary belief self-fulfilling. In
our model, in contrast, lower spending lowers the convenience yield, which in turn keeps the
expected real return on other assets low. Put differently, the Taylor principle – lower inflation
should lead to a lower real interest rate – can hold for the interest rate on savings, even if it does
not hold for the policy rate of the central bank. Endogenous adjustment of the convenience
yield substitutes for policy as a stabilizing force.

Our paper adds to a growing literature on New Keynesian models with financial frictions,
dating back to Bernanke, Gertler and Gilchrist (1999). Recent work has focused on finan-
cial frictions in the banking system; see for example Cúrdia and Woodford (2010), Gertler
and Karadi (2011), Gertler et al. (2012), Christiano, Motto and Rostagno 2012, Ireland (2014),
Del Negro et al. (2017), Brunnermeier and Koby (2018) or Wang (2019). In these models, bank-
ing also matters for transmission and there can be imperfect pass-through from the policy rate
to deposit or loan rates. The papers nevertheless share the feature of the standard model that
there is direct pass-through from the policy rate to the short rate, and therefore households’
nominal stochastic discount factor. They do not speak to the short rate disconnect, the key fact
that motivates our analysis.3

Diba and Loisel (2019) study the determinacy properties of a New Keynesian model with
banks at the zero lower bound. In their setup, reserves are an input into bank lending, and the
government commits to a nominal path of reserves. They establish local determinacy under
the assumption that reserves remain scarce at the zero lower bound. In our model, in contrast,
determinacy properties follow from the convenience yield of bank liabilities. It is not essential
that reserves are scarce, that the government commits to a nominal path of reserves or that
the policy rate is the reserve rate. In fact, our comparison of operating procedures focuses on

3Much recent work on New Keynesian models has been motivated by the zero lower bound on interest rates,
and various "puzzles" such as large fiscal multipliers or strong impact of forward guidance. In this paper, we do
not focus on a lower bound. Instead, our goal is to extend the New Keynesian model in a way that is consistent
with data on interest rates as well as holdings of short safe bonds. From this perspective, 2008 is a watershed
because the Fed adopted a floor system that made liquidity cheap for banks. That decision is still relevant now
that the level of interest rates has risen again.
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times away from the zero lower bound when either (i) reserves are scarce and the central bank
targets an interbank rate – the US policy regime before the financial crisis – or (ii) reserves are
abundant and the central bank sets the reserve rate – the US regime after the crisis.

There is recent work on New Keynesian models with convenience yields on other assets.
In particular, Hagedorn (2018) studies a HANK model with uninsurable income risk and a
riskfree asset. Some consumers are not on their intertemporal Euler equation, so that their
marginal rate of substitution is not equated to the interest rate. Michaillat and Saez (2018)
assume that wealth is a separate argument in utility, in addition to consumption. In both
cases, a convenience yield is priced into assets that serve as a store of value for households.
Our perspective here is different: we emphasize the convenience yield on assets held by banks
that drives a wedge between the policy rate and the rate at which households save, as we
see in the data. Our mechanism is thus complementary to the above effects. For example, a
HANK model with banks might feature weak pass-through from the policy rate to the rate on
household savings.

More generally, our model builds on a long tradition of asset pricing with investors who
face liquidity or collateral constraints, dating back at least to Lucas (1990), Kiyotaki and Moore
(1997) and Geanakoplos (2003). Recent work has emphasized the role of constrained interme-
diaries, see for example Brunnermeier and Pedersen (2009), He and Krishnamurthy (2013) or
Bocola (2016). Our model also features "intermediary asset pricing" but differs from much
of the literature in that banks are firms that maximize shareholder value and can costlessly
recapitalize. The mechanism we emphasize does not require frictions in equity markets, and
does not rely on financial accelerator dynamics.

A convenience yield on short bonds is often captured by making bonds an argument in util-
ity, see for example Bansal and Coleman (1996), Krishnamurthy and Vissing-Jorgensen (2012)
or Nagel (2016). Lenel, Piazzesi and Schneider (2019) take a closer look at the quantitative
asset pricing implications of the approach we follow here. They show that bank optimization
implies an observable pricing kernel based on bank balance sheet ratios that accounts well for
the short rate disconnect, especially at business cycle frequencies.

We also build on a growing literature that studies macroeconomic effects of the structure of
the banking system. In particular, several authors have emphasized the importance of market
power in deposits markets; see for example Yankov (2014), Driscoll and Judson (2013), Duffie
and Krishnamurthy (1996), Egan, Hortacsu and Matvos (2017), Drechsler et al. (2018) or Corbae
and D’Erasmo (2013). In addition, there has been recent interest in bank liquidity management,
for example Bianchi and Bigio (2021), De Fiore, Hoerova and Uhlig (2018), or Piazzesi and
Schneider (2018). Both features matter for the quantitative relevance of our mechanism; our
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results suggest that studying them further is important for understanding the transmission of
monetary policy.

A key feature of our model is the distinction between several payment instruments and
their potential scarcity, in our case, reserves and deposits. The link between scarcity of pay-
ment instruments and convenience yields is well established in monetary theory. In particular,
Kiyotaki and Moore (2005) and Venkateswaran and Wright (2014) have shown how assets that
back payment instruments can inherit their convenience yields, an effect that is also central
to our mechanism. The literature has typically studied the coexistence of multiple payments
used by households, for example currency and various types of deposits; see also Rocheteau,
Wright and Xiao (2018), Andolfatto and Williamson (2015), Lucas and Nicolini (2015), Benigno
and Nistico (2017) and Ennis (2018)). We abstract from currency and emphasize instead a lay-
ered payment system in which households only pay with inside money, and only banks pay
with outside money directly issued by the government.

The paper is structured as follows. Section 2 presents the simple model of central bank
digital currency to introduce the key effects. Section 3 studies a partial equilibrium model of
banks provision of liquidity and the pricing of fixed income claims that serves as a module
for the full macro model with banks in Section 4. Proofs and derivations are collected in the
Appendix.

2 Monetary policy with a convenience yield: a minimal model

In this section we study a minimal model of a central bank targeting an instrument with a
convenience yield: money earns a convenience yield because it enters the utility function.
Households and firms solve the same problems as in textbook treatments of the New Keyne-
sian model. The only difference is that the central bank sets the quantity as well as the interest
rate on money, as opposed to the short rate of the representative agent’s stochastic discount
factor. A special case of the setup is thus a New Keynesian model with a money growth rule.
The model is more general, however, because it explores a larger set of rules for both interest
rates and the money supply.

Our interpretation is that there is a central bank digital currency (CBDC): everyone has
deposit accounts at the central bank, which controls both the nominal quantity and the interest
rate. The short rate, like nominal rates of return on all other assets, adjusts to clear markets.
Our interest in this model stems from its formal similarity to the banking models in Sections 3
and 4. We will show that the same mechanisms are at work both when the central bank makes
reserves abundant – hence controlling their price and quantity – and when the central bank
elastically supplies reserves to hit a fed funds rate target. Details of the banking system can
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be understood as altering the coefficients of policy rules in the model of this section.

2.1 Setup

Every period, the representative household chooses consumption goods Ct, nominal money
balances Dt and labor Nt. Preferences are time separable with discount factor β and felicity

1
1− 1

σ

(
C

1− 1
η

t + ω (Dt/Pt)
1− 1

η

) 1− 1
σ

1− 1
η − ψ

1 + ϕ
N1+ϕ

t , (1)

where Pt is the price level, that is, the price of consumption goods in terms of money. More-
over, η is the intratemporal elasticity of substitution between consumption and real balances
and σ is the intertemporal elasticity of substitution between bundles at different dates. If
σ = η, utility is separable in consumption and real balances.

The New Keynesian model is usually derived by assuming separable utility. Most of our
theoretical results – in particular on determinacy and the dampening of policy effects – already
obtain in this case. We nevertheless develop the model for general nonseparable utility. We
then emphasize below the case σ > η, where consumption and real balances are complements
(that is, the cross partial derivative of the utility function is strictly positive). Complementarity
helps fit the response of velocity to interest rates in the data. Moreover, it introduces a "cost
channel" – marginal cost increases with the opportunity cost of money – which has interesting
theoretical effects, as discussed in Section 2.3 below.4

Money is provided by the central bank which issues a digital currency that pays the nomi-
nal interest rate iD

t . The household can also invest in other short safe assets that pay the nom-
inal interest rate iS

t . The cost of liquidity iS
t − iD

t is the convenience yield on digital currency.
We refrain from calling iS

t the interest rate on short bonds. The banking models below intro-
duce short bonds explicitly; in equilibrium, they are held by banks whose valuation pushes
the bond rate below iS

t . Instead we refer to iS
t as the shadow rate. It represents the (nominal)

short rate in the household’s stochastic discount factor and hence the first-order term in the
nominal rate of return on any asset held directly by households. Since we linearize the model be-
low and abstract from higher order terms, iS

t is the relevant rate of return for all intertemporal
decisions, as well as for the valuation of firms by shareholders.

4We focus on utility that is homogeneous of degree one in consumption and money in order to obtain a unitary
income elasticity of money demand. Some derivations of the standard model instead work with separable utility
that allows for different curvature parameters. It will become clear below how to extend our results to this case.
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The household budget constraint at date t is

PtCt + Dt + St = WtNt + Tt + Πt + Dt−1(1 + iD
t−1) + St−1(1 + iS

t−1). (2)

Income on the right-hand side consists of labor income at the nominal wage Wt, government
transfers Tt, profits Πt from firms, as well as payoffs from money and other assets that earn
the rate iS

t−1. Spending on the left hand side consists of consumption expenditure as well as a
new portfolio of money and other assets. Our timing convention is that money chosen at date
t provides liquidity services at that date – that is, it facilitates shopping for consumption Ct.

Firms. The supply side of the model is standard. Competitive firms make the consumption
good from a continuum of intermediate goods; their production function is CES with elasticity
of substitution ε. Monopolistically competitive firms make intermediate goods from labor
using the linear production function Yt = Nt. We assume Calvo price setting: the opportunity
for an intermediate goods firm to reset its nominal price is an i.i.d. event that occurs with
probability 1− ζ. The firm commits to satisfy demand at its posted price every period.

Government and Equilibrium. The government has two policy tools: the interest rate on
money iD

t and the money supply Dt, the total size of the household’s digital currency account.
We specify feedback rules for these instruments below. Throughout, we consolidate the central
bank and Treasury, and assume that the government levies lump sum taxes Tt to satisfy its
budget constraint Dt + PtTt = (1 + iD

t−1)Dt−1. An equilibrium then consists of sequences for
consumption, labor, lump sum taxes, output of the various goods as well as the nominal
interest rates iS

t , iD
t , the wage and the price level such that households and firms optimize, the

government budget constraint and policy rules are satisfied, and the markets for goods, labor
and money clear.

We consider Taylor rules for the interest rate on money, that is, iD
t is a function of current

inflation and output. The central bank thus targets the rate on an asset that earns a convenience
yield, as in the banking models of Section 3. We show below that a Taylor rule on short bonds
held by banks – as currently used by many central banks – works similarly to a Taylor rule for
iD
t . For the money supply, we consider rules of the form

Dt

Pt
= Dr

t + µ

(
Dt−1

Pt
− Dr

t

)
. (3)

where Dr
t > 0 and µ < 1. If µ = 0, the government simply commits to a path for real balances.

Positive µ captures short term nominal rigidity in the money supply: while inflation can
temporarily erode the supply of real balances, the government gradually steers that supply
towards its desired path Dr

t . If Dr
t is constant, then it represents real balances in a steady state
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with zero inflation.

This class of money supply rules is motivated by our banking model below. The case µ = 0
is relevant when inside money is largely backed by real assets of the banking system that
do not respond to inflation. To motivate the case µ > 0, suppose that money is backed by
long term nominal debt, part of which matures and is replaced by new issues every period.
The real value of this debt – and hence the money it can back - then depends not only on
the real amount of new issues, but also on how much inflation revalues the legacy long term
nominal debt. We view the rule (3) as a simple reduced form way to capture this idea: a higher
parameter µ corresponds to longer maturity of the debt and hence the nominal rigidity in the
money supply.5

Equilibrium. Regardless of the details of policy, characterization of equilibrium is routine
and relegated to Appendix A.1. The equilibrium paths of output, the shadow rate iS

t , and the
price level satisfy a system of difference equations: a New Keynesian Phillips curve – derived
from firms’ optimal price setting – together with an Euler equation (A.5) and market clearing
for money. A convenient way to describe equilibrium dynamics is to linearize the difference
equations around a steady state – this is how we proceed below.

Steady state. An equilibrium with constant real quantities and rates of return obtains if the
government chooses constant policy parameters µ, Dr and iD. Let π denote the steady state
rate of inflation. The standard intertemporal Euler equation then implies a steady state shadow
rate iS = δ + π, where δ = 1/β− 1 is the household’s discount rate. Output and inflation are
determined by two equations. First, regardless of policy, output depends in familiar fashion
on firms’ markup and marginal cost:

Y =

(
ε− 1

ε

1
ψ

Q−(1−
η
σ )

) 1
ϕ+ 1

σ ; Q =

(
1 + ωη

{
δ + π − iD

1 + δ + π

}1−η
) 1

1−η

. (4)

Here Q is the steady state price index for a bundle of consumption and liquidity services
provided by money. It is a weighted average of the price of consumption and households’ cost
of liquidity, or opportunity of money – the term in braces. In the separable case, η = σ, firms’
marginal cost does not depend on the cost of liquidity. In contrast, when η < σ so money
and consumption are complements, cheaper liquidity lowers firms’ marginal cost and hence

5We emphasize that none of our money supply rules provides a "nominal anchor" for the economy, in contrast
to, say, monetarist models, or a New Keynesian model with a nominal money growth rule. In fact, we have
explicitly excluded the case µ = 1 to ensure that the steady state quantity of money is only fixed in real terms.
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increases output.6

Second, households must be willing to hold all real balances the government supplies.
How prices adjust to make this happen depends on the money supply rule. Suppose first the
government commits to a path for real balances. Market clearing for money means

ωη

(
δ + π − iD

1 + δ + π

)−η

Y = d∗
1− µ

1− µ
1+π

. (5)

Here "money demand" on the left-hand side follows from households’ first order conditions
for money and consumption. It is proportional to output since utility is homothetic. It is also
decreasing in the opportunity cost of money; the elasticity of substitution η between consump-
tion and real balances serves as the elasticity of money demand with respect to households’
cost of liquidity.

Interest rate targeting works very much like in the standard New Keynesian model: for
any target inflation rate π > µ− 1, there is a unique interest rate iD < δ + π such that π is
steady state inflation; in addition, many price levels are consistent with steady state.7 A key
difference to the standard model is that the natural rate of interest lies below the rate of time
preference. In order to achieve zero inflation, the government must set the interest rate to a
low rate that takes into account the convenience yield conveyed by money.

Linearized model To study the dynamics of the model, we follow the standard approach
of log-linearizing around a steady state with zero inflation. The inflation rate is ∆pt =

log Pt/Pt−1 = pt − pt−1. We indicate log deviations from steady state by hats. We arrive
at a system of linear difference equations for output, the interest rate and the price level.
Derivations are provided in Appendix A.1. In particular, the New Keynesian Phillips Curve
and Euler equation take the standard form

∆ p̂t = βEt∆ p̂t+1 + λ

((
ϕ +

1
σ

)
ŷt +

(
1− η

σ

) χ

δ− rD

(
iS
t − δ− (iD

t − rD)
))

, (6a)

ŷt = Etŷt+1 − σ
(

iS
t − Et∆ p̂t+1 − δ

)
+ (σ− η)

χ

δ− rD Et

(
∆iS

t+1 − ∆iD
t+1

)
. (6b)

In the separable case, η = σ, the last term in both equations is zero and we obtain the standard
three equation model. As usual, the parameter λ = (1− ζ)(1− βζ)/ζ measures the response

6If it were costless to produce real balances, then it would be optimal to drive the cost of liquidity to zero. In
this paper, we are interested in the response of the economy with standard preferences and interest rate policies.
We thus maintain preferences that preclude the possibility of satiation with money.

7Substituting for Y in (5) from (4) and multiplying by the bracket on the right and side makes the left hand
side an upward sloping function of iD on the left hand side that converges to infinity as iD goes to iD + π and to
zero as iD goes to −∞.
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of inflation to marginal cost.

With complementarity, η < σ, there is a cost channel: a temporarily higher cost of liquidity
iS
t − iD

t increases firm’s marginal cost and lowers output. The strength of the cost channel
depends on the parameter χ, the elasticity of the price of a bundle of consumption and money
(A.2) with respect to the cost of liquidity:

χ =

(
1 + ω−η

(
δ− rD

1 + rD

)η−1)−1

. (7)

The elasticity χ is positive and increasing in households’ preference for liquidity as captured
by the utility weight ω. In the relevant case of a strong income effect (η < 1), it is also
increasing in the steady state price of liquidity chosen by the central bank: a higher price of
liquidity increases the expenditure share on liquidity.

Equilibrium in the money market is summarized by the intratemporal Euler equation (A.1)

iS
t − δ = iD

t − rD +
δ− rD

η

(
p̂t + ŷt − d̂t

)
. (8)

The general principle here is that, to first order, expected returns on all assets are equated.
The return on money has a pecuniary component, the interest rate iD

t on money, as well as a
convenience yield. The coefficient in front of velocity is the inverse semielasticity of money
demand with respect to the cost of liquidity. It depends both on the elasticity η and on the
steady state spread δ− rD. If money demand is less elastic, then fluctuations in velocity have
a stronger effect on the return on money.

We consider policy rules for the interest rate and real balances

iD
t = rD + φπ ∆ p̂t + φy ŷt + ut, (9a)

d̂t − p̂t = µ
(

d̂t−1 − p̂t−1 − ∆ p̂t

)
, (9b)

where ut is an interest rate policy shock. We do not claim that these policy rules are optimal or
otherwise desirable for CBDC rates or quantities. In particular, we are interested in the Taylor
rule (9a) only because it is a simple rule that has been widely studied. Our goal is to describe
what happens if the central bank targets an asset with a convenience yield in this way. The
bank models below will show that this is a useful way to think of postwar monetary policy.

To define recursive equilibrium, it is helpful to work with real balances as a state variable
rather than, say, the price level. An equilibrium thus consists of sequences for inflation, output,
the shadow rate iS

t , the interest rate on money iD
t , and real balances d̂t − p̂t that satisfy (6), (8)
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and (9). Given such sequences and some initial steady state level of prices (together with an
associated initial nominal money supply), we also obtain paths for the money supply and the
price level.

2.2 The separable case

In this section, we study the CBDC model when utility is separable in consumption and money.
The behavior of the private sector is then exactly the same as in the standard three equation
New Keynesian model: the New Keynesian Phillips curve and Euler equation are given by (6)
with η = σ. Moreover, money market equilibrium (8) is the same here as in the derivation of
the standard model in Woodford (2003) and Gali (2008).

The only difference between the CBDC model and the standard New Keynesian model is
in the specification of policy. The standard model adds an interest rate rule for the shadow
rate iS

t and sets the interest rate iD
t to zero. Since the central bank targets two interest rates,

there cannot be an exogenous path or rule for the money supply. Instead, money is elastically
supplied to achieve the desired interest rates iS

t and iD
t . The CBDC model, in contrast, does

not impose a policy rule for the shadow rate, and it replaces the peg of iD
t at zero with a policy

rule for iD
t . Since it drops one equation, it has to add one as well, namely the feedback rule for

real balances. The money supply thus becomes a policy instrument together with the interest
rate iD

t . We now consider the implications of this change for price level determinacy as well as
the transmission of policy.

Price level determinacy. When interest rate policy is specified as a path for the shadow rate iS,
the standard model is known to permit multiple equilibria, even when attention is restricted
only to bounded paths for output and inflation. It is helpful to recall the intuition for this
result. We focus on the case where the central bank pegs the nominal shadow rate iS to
some fixed number. One equilibrium is always that inflation and output are constant at their
steady state values, so the price level remains at its initial condition. However, there are other
equilibria with self-fulfilling booms and inflation.

To construct such an alternative equilibrium, suppose agents believe that output is high
today and gradually falls back towards the steady state. According to the New Keynesian
Phillips curve, paths of high output imply paths of marginal cost above steady state, and hence
inflation. However, with a nominal interest rate peg for iS, a path with high inflation is a path
of low real expected returns on savings. According to the Euler equation, agents respond to
low expected returns by intertemporally substituting consumption toward the present. High
demand for goods in turn calls for high equilibrium output: the initial belief in high output is
thus self-fulfilling.
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A Taylor rule with a high coefficient on inflation breaks the argument: in response to
high inflation, the central bank aggressively raises the nominal shadow rate and hence the
real return on savings. It thereby discourages consumption today – this is what rules out a
self-fulfilling inflationary boom. The central bank can achieve a similar stabilizing effect if it
increases the nominal rate in response to high output. Both features of policy implement the
Taylor principle: the response of the nominal return on savings to inflation should be larger
than one.

In the CBDC model, the Taylor principle can be satisfied even if the central bank pegs the
policy rate. This is because the nominal return on savings is not controlled by the central
bank but moves endogenously with the convenience yield. The movement is stabilizing: for
example, an inflationary boom implies higher spending and hence a higher convenience yield.
It thus also raises the shadow rate as returns are equated in equilibrium according to (8). It
remains to assess when the convenience yield effect is strong enough to rule out multiple
equilibria. The key issue is whether an increase in spending generated by an inflation boom
sufficiently increases velocity.

We say that equilibrium is locally determinate if the difference equation describing it has
a unique bounded solution for any initial condition. We characterize local determinacy with
feedback rules for the policy rate and the money supply by

Proposition 2.1: Suppose utility is separable in consumption and money (σ = η). The system of
difference equations consisting of (6), (8) and(9) has a unique bounded solution for any initial level of
real balances (d̂−1 − p̂−1) if and only if

LR(iS, ∆p) :=
δ− rD

η

(
µ

1− µ
+

1− β

λ(ϕ + σ−1)

)
+ φπ + φy

1− β

λ(ϕ + σ−1)
> 1. (10)

The proof is in Appendix A.2. It is not essential for the argument that policy actively
responds to inflation or output: the condition also covers the case of an interest rate peg
φπ = φy = 0. In fact, it extends to any bounded exogenous paths of the interest rate or real
balances because it relies only on the eigenvalues of the homogenous part of the difference
equation. The condition formally generalizes the Taylor principle to the case of an endoge-
nous convenience yield: it ensures that the long run response LR(iS, ∆ p̂) of the shadow rate to
inflation is larger than one. Without a convenience yield, the first term is zero and the condi-
tion reduces to that from Bullard and Mitra (2002): a sufficiently strong reaction of the central
bank to either inflation or output is necessary and sufficient to stabilize the economy. The
term multiplying φy is the long run response of output to inflation: according to the Phillips
curve, higher inflation must be driven by higher cost and hence requires higher output.
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The new element here is that the return on savings (8) reflects the convenience yield.
Higher inflation goes along with a higher convenience yield for two reasons. First, higher
output, or higher real spending, increases velocity as captured by the second term in the first
bracket. With some rigidity in the money supply, µ > 0, high inflation further increases the
convenience yield by decreasing real balances. As money becomes more scarce in real terms,
its convenience yield rises. From (9b), the long run response of real balances to inflation is
−µ/(1− µ). We emphasize that stabilization here is due to short term nominal rigidities –
since µ < 1, there is no nominal anchor due to government commitment to some long run
nominal debt path. The proposition is therefore not implied by well known results on deter-
minacy of equilibrium with a nominal anchor.

In contrast, the convenience yield effect reduces the scope for multiple equilibria even in
the extreme opposite case of fixed real balances, µ = 0. It now works only through changes
in output – its strength thus depends on the slope of the Phillips curve. In particular, there
is less scope for multiple equilibria if prices are less flexible or preferences over labor and
consumption are such that marginal cost responds less to output. In either case, lower inflation
implies a larger long run drop in output and hence in the convenience yield and the return on
savings. From (8), the strength of the convenience yield effect also increases with the inverse
semielasticity of money demand (δ − rD)/η, which determines by how much lower output
lowers the convenience yield.

More generally, the proposition clarifies that nominal rigidities in money supply are a
stabilizing force. For µ ∈ (0, 1), the government does not commit to a path for money going
forward. However, there is always a legacy amount of nominal money in the economy. If the
price level falls, then this legacy money is revalued and the convenience yield declines. As
in part (a), we then have a stronger stabilizing force as the convenience yield responds to the
price level. We view this case as especially relevant since it suggests that simply the use of
nominal money as a medium of exchange induces a stabilizing force. In other words, what
matters is only that the money supply is partly predetermined from the past; it is not essential
that it will not respond to future inflation.

Monetary policy transmission. We emphasize two differences between policy transmission in
the CBDC model versus the standard New Keynesian model. Consider first the role of money.
In the standard model, there is a strong sense in which money doesn’t matter: for a given
interest rate rule, money demand shocks have no effect on inflation, output and the shadow
rate. Formally, the result follows because a system consisting of (6) with η = σ, (8) and a
Taylor rule for iS is block recursive: we can solve for output, inflation and the shadow rate
independently of the parameters and any shifters of the money market equilibrium condition.
The latter only determines how much money needs to be endogenously supplied in order to
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achieve the target interest rate iS.

In the CBDC model with a policy rule for the interest rate on money, money matters even
if utility is separable. Indeed, the system consisting of (6) with η = σ, (8) and (9a) is not block
recursive. A shock to money demand, such as a change in the weight on money in utility,
would enter as an additive shock in (8). If the central bank sticks to its interest rate rule, such
a shock affects the shadow rate iS

t and hence the allocation. At the same time, a change in
the exogenous quantity of digital currency supplied by the central bank has real effects for a
given interest rate rule. In the banking models studied below, this property carries over to the
quantity and quality of collateral assets used by banks to back inside money.

Second, consider interest rate policy. In the CBDC model, changes in the policy rate have
weaker real effects than in the standard New Keynesian model. The reason is the imperfect
pass-through from the policy rate to the shadow rate, and hence to intertemporal decisions,
as described by (8). Indeed, consider a positive monetary policy shock, say, that increases the
nominal rate on money. With sluggish price adjustment, the real rate on money also increases,
which entails lower output and lower inflation on impact, as in the standard model. However,
lower spending also reduces the convenience yield on money. As returns on all assets are
equated according to (8), the effect of the policy shock on the shadow rate iS is lower than
in the standard model. In this sense, interest rate policy is weaker. We quantify the effect in
Section 2.4.

2.3 Nonseparable utility and the cost channel

In the CBDC model, the pass-through (8) from the policy rate to the shadow rate depends
importantly on the elasticity of money demand η. Since standard estimates of η are lower than
conventional numbers for the intertemporal elasticity of substitution σ, the separable case is
overly restrictive. In this section, we thus explore the nonseparable case with η < σ, where
money and consumption are complements in utility. A key new feature is then that the cost
channel terms in the Phillips curve and Euler equation become relevant: a temporarily higher
cost of liquidity for households iS

t − iD
t increases firms’ marginal cost and hence inflation; at

the same time, it makes consumption more expensive and hence lowers output.

The introduction of a cost channel accentuates the difference between interest rate policy
in the CBDC model versus the standard model. To see this, consider again an increase in the
policy rate in the CBDC model. A drop in spending and hence a lower convenience yield now
feeds back to output and inflation: a lower cost of liquidity amplifies the fall in inflation but
further dampens the fall in output. Interestingly, the cost channel effects here are the opposite
of those in the standard model where the central bank increases the shadow rate holding fixed
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the rate on money, so the cost of liquidity for households increases. In the standard model,
the cost channel thus dampens the fall in inflation and amplifies the fall in output.

The presence of a cost channel in the CBDC model also introduces a new source of fragility
if the central bank responds too strongly to output. Indeed, suppose that households believe
in a path of high expenditure on bundles of consumption goods and liquidity. Along such a
path, cost is high for firms which translates into high inflation. With a low enough return on
savings, the path is self-fulfilling. The new feature is that such a path need not exhibit high
output. Instead, spending by household and firms’ cost could be high because liquidity is
expensive, while output is actually below steady state. We thus have self-fulfilling stagflation.

With a strong cost channel, an interest rate policy that responds positively to output can
be destabilizing. To rule out multiplicity, we would like to follow the Taylor principle and
increase the nominal return on savings when inflation is high. However, with a threat of
stagflation, it does not help to lower the policy rate when output falls. If interest rate policy
responds too strongly to output, then the above dynamics can be explosive and no bounded
equilibrium exists. To rule out this case, we assume in what follows that

φy

(
1
η
− 1

σ

)
χ

ϕ + 1
σ

<
η

δ− rD . (11)

The condition is always satisfied if φy = 0 or there is no cost channel. More generally, it
restricts the product of φy and the long run effect of the policy rate on output.

The key to local determinacy is again the long run response of the return on savings to
inflation. With a cost channel, it becomes

LR(iS, ∆ p̂) =
δ− rD

η

(
µ

1− µ
+

1− β

λ(ϕ + σ−1)

)
+ φπ + φy

1− β

λ(ϕ + σ−1)

+

(
1
η
− 1

σ

)
χ

ϕ + 1
σ

(
φπ − 1− φy

µ

1− µ

)
.

The first line takes the same form as in the separable case (10), although now we have η <

σ. The second line shows that, with a cost channel, an aggressive interest rate response to
inflation still helps avoid multiplicity, whereas an aggressive response to output now hurts.
A peg leaves more room for multiplicity since the effect of inflation on output is weaker and
hence the convenience yield effect is reduced. Finally, (11) implies that more nominal rigidity
(higher µ) contributes to stability as before.

The determinacy properties with feedback rules are summarized by:

Proposition 2.2: Suppose consumption and money are complements in utility (η < σ) and (11) holds.
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The system of difference equations consisting of (6), (8) and (9) has a unique bounded solution for any
initial level of real balances (d̂−1 − p̂−1) if and only if LR(iS, ∆p) > 1.

The proof is in Appendix A.2.

2.4 Numerical example

In this section, we present a numerical example to show that the differences between the
standard model and the CBDC model can be quantitatively large.

Calibration. The model period is a quarter. We select a discount factor of β = 0.99, which
implies a 4 percent discount rate δ per year. To calibrate the discount rate and the opportunity
cost of money, we need measures of the interest rate on money as well as the shadow rate
in the households’ stochastic discount factor. For the former, we choose the interest rate on
Money of Zero Maturity (MZM), a broad measure of money constructed by the St. Louis Fed.
For the latter, we want a short rate that is not contaminated by the convenience yield effects we
study in our bank models below. We thus use the 3 month rate of the yield curve constructed
by Gurkaynak, Sack and Wright (2007) using only Treasury bonds, leaving out T-bills that are
predominantly held by payment intermediaries. The resulting average deposit spread is 2.4%
per year, so we work with an average deposit rate rD = .004.

We follow standard practice to identify the elasticity of money demand η from the time
series relationship between the velocity of money and its opportunity cost. In particular, we
find the semielasticity η/

(
δ− rD) by regressing log velocity of MZM on the spread between

the 3 month T-bill rate and the MZM own rate, which is the average rate on instruments in
MZM. The coefficient on the spread is 8.1 which implies an elasticity of η = .22. This number
is similar to what has been used in past studies. We identify the final preference parameter
ω = 0.14, the weight on money in utility from (5), to match an average velocity of 1/2.

Other parameters take standard values from the New Keynesian literature. We set both
the intertemporal elasticity of substitution σ and the Frisch elasticity ϕ equal to one. The
probability of resetting prices is 1− ζ = .75, so the response of inflation to marginal cost is
λ = .085. Without a cost channel, this response only consists of the response of inflation to
output, given by λ (ϕ + 1/σ) = .17. The strength of the cost channel is then measured by the
parameter χ = .0118; in other words, a one percentage point increase in the cost of liquidity
has about the same effect on inflation as a 70bp increase in output.

For policy, we assume that the central bank keeps real balances constant, that is, we set
µ = 0 in the money supply rule (9b). For interest rate policy, we assume a Taylor rule with
interest rate smoothing that is consistent with typical estimates. In our CBDC Taylor rule, the
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current policy rate depends not only on inflation but also on the last policy rate according to

iD
t = .5iD

t−1 + 1.5πt + vt. (12)

Moreover, we use a version of the standard model where money pays a constant interest rate
rD. This nonstandard assumption has no effect on dynamics. It permits a cleaner model com-
parison in the sense that the average interest rate on money and the average cost of liquidity
for households are the same across the two models.

Dampening. Figure 1 considers responses to an unanticipated increase in the policy rate by
25bps, or 1 percentage point per year. The top three panels report percentage deviations from
steady state in the price level, output and nominal money. The bottom three panels report
percentage point deviations from steady state in inflation, the policy rate and households’ cost
of liquidity, that is, the spread between the shadow rate and the deposit rate. In all panels,
light gray and black lines represent the standard New Keynesian model and the CBDC models,
respectively.

The impact effects illustrate the dampening of interest rate policy when the policy instru-
ment earns a convenience yield. While contractionary policy causes a recession and deflation
in both models, output and inflation responses in the CBDC model are only about half the
size of those in the standard model. There are two reasons, illustrated in the bottom right
panel. First, pass-through is imperfect in the CBDC model: the spread between the policy rate
and the shadow rate declines. This effect is quantitatively relatively small. Second, the cost of
liquidity in the standard model moves in the opposite direction from the CBDC model. This
is an important force that makes output fall much more in the standard model.

3 Banks, the central bank and fixed income markets

In this section we describe a simple model of the banking sector and the central bank. Banks
issue debt and equity, and hold assets, including reserves. What distinguishes banks from
other firms is that their debt provides liquidity services. This means that (i) bank debt—
labelled deposits in what follows—enters households’ utility as money and (ii) banks must
handle liquidity shocks that are proportional to their level of deposits. Our model further
assumes that banks can issue equity at no cost every period and that all debt is short term, so
banks effectively behave myopically. For simplicity, we work directly with two-period-lived
banks and describe partial equilibrium in fixed income markets within a period. In the next
section we embed this "banking module" into the New Keynesian model.
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Figure 1: Impulse responses to a one time 25bp monetary policy shock; Taylor rule with
coefficient 1.5 on inflation and .5 on past interest rate. Top three panels: percent deviations
from steady state; bottom three panels: percentage point deviations from steady state. Spreads
are differences between shadow rate and policy rate.

3.1 Setup

Banks hold reserves Mt, outside money issued by the government that earns the nominal
interest rate iM

t . They issue deposits Dt, inside money held by households that earns the
interest rate iD

t . They may also take positive or negative position in an overnight interbank
market, or "Federal funds" market. The balance sheet of the typical bank is

Assets Liabilities
M Reserves Money D
F+ interbank lending interbank borrowing F−

A Other assets Equity

Other assets At available to banks earn the nominal interest rate iA
t . Banks maximize

shareholder value. We assume that bank equity can be adjusted every period at no cost.

Liquidity shocks. To generate a liquidity benefit for reserves, we introduce bank level liquidity
shocks, motivated by banks’ provision of liquid inside money. Formally, suppose every period
has two subperiods. In the first subperiod, bank i selects a portfolio of reserves Mi

t and other
assets Ai

t and issues money Di
t. In the second subperiod an individual bank must transfer

λ̃i
tD

i
t funds to other banks. If λ̃i

t is negative, then the bank receives funds and thus increases
its debt. We assume that liquidity shocks are iid across banks with a continuous cdf G

(
λ̃i

t
)

that
is strictly increasing on the interval [−λ̄, λ̄]., with G(−λ̄) = 0 and G(λ̄) = 1. We also assume
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that liquidity shocks have mean zero. With a continuum of identical banks, this means that all
flows in the second subperiod remain within the banking system.

Once liquidity shocks have been realized, the interbank loan market opens. Interbank loans
are traded competitively at the rate iF

t ; they are repaid in the first subperiod of the subsequent
period. Markets for deposits, other assets or equity remain closed. The bank budget constraint
in the second subperiod is therefore

Mi
t − λ̃i

tD
i
t = M̃i

t + Fi+
t − Fi−

t , (13)

where M̃i
t denotes reserves held overnight (carried over to period t + 1), while Fi+

t and Fi−
t are

funds lent and borrowed in the fed funds market, respectively.

Leverage constraint. Banks can issue debt only if they have sufficient collateral to back it, as
described by the leverage constraint

Fi−
t + Di

t

(
1− λ̃i

t

)
≤ `

(
M̃i

t + ρFFi+
t + ρA Ai

t

)
. (14)

where `, ρF and ρA are positive scalars. The parameter ρA < 1 captures the idea that other
assets are worse collateral than reserves. Similarly, we assume that ρF < 1: interbank loans—
claims on the private sector—are also worse collateral than reserves. This assumption makes
it worthwhile for banks to hold reserves even if the fed funds rate iF

t is above the reserve rate
iM
t . The parameter ` ≤ 1 serves as a bound on leverage, defined as the ratio of debt to quality-

weighted assets. One interpretation of the constraint is as a capital requirement: equity must
be higher if assets are lower quality. Even without regulation, a leverage constraint can be
viewed as a simple way to model an increasing marginal cost of debt.8

When a bank decides on its balance sheet in the first subperiod, it has to choose enough
initial reserves and other assets to withstand the largest possible inflow without taking any
interbank positions. The reason is that interbank positions (non-negative Fi−

t and Fi+
t ) add

to debt and are worse collateral than reserves; interbank positions thus do not help relax the
leverage constraint (14). Suppose a bank experiences the largest possible inflow and holds
M̃i

t = Mi
t + λ̄Dt from (13). This bank faces the worst case leverage constraint(

1 + λ̄ (1− `)
)

Di
t ≤ `

(
Mi

t + ρA Ai
t

)
. (15)

8In a more general model, such costs might be derived from deadweight costs of bankruptcy. Collateral quality
can then be derived from the riskiness of bank assets. While the resulting tradeoffs that determine leverage are
similar to the ones here, adding portfolio choice under risk yields additional testable predictions on balance sheet
ratios, explored for example in Lenel, Piazzesi and Schneider (2019).
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A bank that satisfies (15) also satisfies its leverage constraint for any other net inflow λ̃i
t > −λ̄.

Bank cash flow. Bank i’s nominal cash flow in the first subperiod reflects changes in reserves,
deposits, and other asset positions as well as interest on those positions and payoffs from
trading in the interbank loan market:

M̃i
t−1

(
1 + iM

t−1

)
−Mi

t − Di
t−1

(
1− λ̃i

t−1

) (
1 + iD

t−1

)
+ Di

t

+ Ai
t−1

(
1 + iA

t−1

)
− Ai

t +
(

Fi+
t−1 − Fi−

t−1

) (
1 + iF

t−1

)
. (16)

An individual bank maximizes the present value of cash flow, discounted at the shadow rate
iS
t . Since the model is deterministic, the short rate iS

t in the household stochastic discount
factor serves as the banks’ cost of capital, or the required rate of return on bank equity. It
is convenient to work with nominal cash flows discounted by nominal rates to avoid extra
notation.

Imperfect competition in deposit markets. To allow for bank market power, we assume mo-
nopolistically competitive banks that offer varieties of deposits. We thus modify preferences
relative to Section 2 so households care about a CES aggregate of different varieties Di

t, each
produced by a different bank i:

Dt =

(∫ (
Di

t

)1− 1
ηb

) 1
1− 1

ηb ,

where ηb measures the elasticity of substitution between varieties. One interpretation is that
the household sector works like a large "family" with members in different regions, and for
historical reasons banks exert local market power. The key effect we are after is that deposits
are a cheap funding source for banks not only because of their liquidity benefit to households,
but also because of market power.

Consider deposit demand faced by an individual bank. Bank i supplies liquidity to house-
holds at the price (iS − iD,i

t )/(1 + iS
t ), where iD,i

t is the deposit rate promised by bank i. CES
preferences imply an ideal price index that aggregates the individual liquidity prices. We de-
fine the average deposit rate iD

t such that the spread (iS− iD,i
t )/(1+ iS

t ) achieves that aggregate
price of liquidity. We can then write deposit demand as

Di
t =

(
iS
t − iD,i

t

iS
t − iD

t

)−ηb

Dt. (17)

The derivation is familiar from monopolistic competition in the goods market and relegated
to Appendix A.3.1. The only unusual feature is that prices take the form of spreads since the
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relevant good is liquidity.

Partial equilibrium in fixed income markets. In the remainder of this section, we study the
behavior of the banking system and the central bank at date t taking as given the interest
rate policy of the central bank. Banks are ex ante identical and their objective function and
constraints are linear in their balance sheet positions. As a result, only aggregate ratios are
determinate. We thus define a (symmetric, partial) equilibrium in the banking sector as initial
balance sheet ratios Mt/Dt and At/Dt, a deposit interest rate iD

t , a rate on other assets iA
t ,

as well as a distribution of interbank market positions F+
t /Dt and F−t /Dt such that banks

optimize and the date t markets for interbank loans, reserves, money and other assets clear.

3.2 Bank optimization

With a positive deposit spread iS
t − iD

t > 0, the leverage constraint has to bind in at least some
states of the world. From the perspective of the bank, inside money represents a source of
funding that is strictly cheaper than equity, which must earn the shadow rate iS

t . Without a
leverage constraint, it would thus be optimal to fund the bank entirely with inside money.
The case of positive deposit spread is relevant since we already know from the household
Euler equation (A.1) that deposits provide a convenience yield whenever the supply of real
balances is finite. In equilibrium with banks, a limited quantity of collateral will imply a
limited quantity of inside money, which in turn justifies a positive deposit spread.9

Optimal liquidity management. In the second subperiod, a bank chooses the allocation of
funds to reserves or interbank positions on the right hand side of the budget constraint (13)
for the second subperiod. It maximizes the contribution of those positions to shareholder
value (16), subject to the budget constraint as well as the leverage constraint (14).

The presence of a leverage constraint implies that banks have to hold reserves overnight if
they experience a large inflow of inside money (and hence reserves). Consider a bank with a
net inflow large enough so the left hand side of the budget constraint (13) is positive. The bank
can either lend out reserves or hold them overnight on its balance sheet. The difference is that
interbank loans are worse collateral than reserves, since ρF < 1. Lending out all reserves may
thus lower collateral sufficiently so the bank cannot back its debt—which has also increased
with the inflow—and violates the leverage constraint (14). In particular, the bank must hold

9A hard leverage constraint simplifies the analysis, but is not essential for our results. In Piazzesi and Schnei-
der (2018), optimal leverage follows from a smooth tradeoff between the marginal cost of leverage and the
liquidity benefit of deposits. The key point both here and in that model is that the liquidity benefit works like the
tax advantage of debt in the standard tradeoff theory of capital structure – combined with an increasing marginal
cost of debt, it generates a determinate optimal leverage ratio.

23



reserves overnight if

λ̃i
t < λi∗

t :=
Di

t − ρF`Mi
t − ρA`Ai

t

(1− ρF`) Di
t

. (18)

The threshold shock λi∗
t is the smallest shock (or the largest net inflow) so the leverage

constraint is satisfied even when all reserves are lent out.10 We also note that the leverage
constraint never binds for banks that experience a large enough reserve outflow. To see this,
consider a bank with an outflow of reserves that makes the left hand side of the budget
constraint (13) negative. This bank must borrow in the interbank market and it doesn’t make
sense for it to hold any reserves. However, interbank borrowing counts against the leverage
constraint in exactly the same way as inside money. As a result, funding an outflow of reserves
via interbank borrowing does not affect debt capacity.

The optimal choice of reserves now depends on interest rates. If iF
t > iM

t , then banks
would like to lend out as many reserves as possible to take advantage of the high interbank
rate. They economize on reserves by holding the minimum amount that keeps the leverage
constraint satisfied. If iF

t = iM
t , in contrast, banks are indifferent between holding reserves

or lending them out: any reserve position above the minimum amount is also optimal. We
summarize this result as

Proposition 4.1 (Demand for overnight reserve holdings). A bank’s optimal reserve holdings in the
second subperiod satisfy

M̃i
t ≥ max

{
λi∗

t − λ̃i
t, 0
} 1− ρF`

` (1− ρF)
Di

t, (19)

with equality if iF
t > iM

t .

The proof is in the appendix and follows directly from bank first order conditions. The key
takeaway is that the nonpecuniary benefit of relaxing a binding leverage constraint pushes
some banks to hold reserves even when they are dominated in rate of return by interbank
lending. Indeed, a shareholder value maximizing bank that both lends out reserves and holds
them directly equates the total returns on both positions

1 + iF
t + γ̃i

tρF` = 1 + iM
t + γ̃i

t`, (20)

where γ̃t denotes the Lagrange multiplier on the leverage constraint in the second period
problem. The total return on either position consists not only of the pecuniary return – the
interest rate – but also a nonpecuniary component that reflects the collateral value of the
position. Because the collateral value of interbank loans is lower than that of reserves, a

10To derive the threshold, solve the budget constraint (13) for F+i
t , substitute into the leverage constraint (14)

and set M̃i
t = F−i

t = 0.
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positive spread between the interbank and reserve rate is consistent with bank optimization.

Banks’ optimal interbank market positions also depend on realized deposit inflows. Banks
with large outflows must borrow in the fed funds market to satisfy their budget constraint in
the second subperiod. Banks with large enough inflows do not borrow, since the increase in
deposits takes up all the available debt capacity. If the interbank rate is above the reserve rate,
they keep just enough reserves to still satisfy the collateral constraint. Some are able to lend
out all the reserves they have, while others hold both reserves and interbank loans. If iF

t = iM
t ,

then the interbank market position is indeterminate.

Optimal bank portfolios and capital structure. Consider now a bank’s portfolio and capital
structure choice in the first subperiod. The objective function is(

1 + iA
t

)
Ai

t −
(

1 + iD,i
t

)
Di

t +
(

1 + iF
t

)
Mi

t

−
(

iF
t − iM

t

) 1− ρF`

` (1− ρF)

∫ max{λi∗
t ,−λ̄}

−λ̄

(
λi∗

t − λ̃
)

dG
(
λ̃
)
]Di

t

−
(

Ai
t + Mi

t − Di
t

) (
1 + iS

t

)
, (21)

where the threshold shock λi∗
t is given by (18). If either iF

t = iM
t or λi∗

t < −λ̄, the second line
disappears: banks anticipate that all liquid positions chosen in the second subperiod earn the
interbank interest rate iF

t . This may happen for two reasons. First, policy may be such that
reserves simply pay the interbank rate. Alternatively, the bank might choose to acquire so
much collateral in the first subperiod that it avoids holding any reserves overnight – formally,
it chooses a threshold λi∗

t < −λ̄. In contrast, a bank that sets λi∗
t > −λ̄ holds reserves

overnight with positive probability.

Banks choose positions Mi
t and Ai

t and the deposit rate iiD
t to maximize (21) subject to

the leverage constraint (15) and the demand function (17). They take as given other banks’
deposit choices as well as the interbank rate that will prevail in the second subperiod – since
there is no aggregate risk, they can perfectly foresee that rate. As long as iF

t < iS
t and iA

t < iS
t ,

it is optimal for banks to always incur some liquidity risk, in the sense of setting λi∗
t > −λ̄.

Indeed, consider a bank that sets λi∗
t ≤ −λ̄. Such a bank always satisfies (15) since ρF < 1.

Moreover, it loses money on its collateral holdings that earn a rate below the cost of capital
iS
t . As a result, the bank can reduce collateral positions so as to set λi∗

t slightly higher than
λ̄. It thereby strictly lowers losses (in the first line of (21)), but incurs no marginal cost as the
derivative of the second line of (21) is zero at λi∗ = −λ̄.

Given its constant returns to scale business model, shareholder value maximization re-
quires that banks equate returns on all balance sheet positions to the cost of capital iS

t , the
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short rate in the household’s stochastic discount factor. For λi∗ > −λ̄, the FOC for reserves
and other assets A are

iS
t = iM

t +
(

iF
t − iM

t

) (
1− G

(
λi∗

t

))
+ `

{
iF
t − iM

t
` (1− ρF)

G
(

λi∗
t

)
+ γi

t

}
, (22a)

iS
t = iA

t + ρA`

{
iF
t − iM

t
` (1− ρF)

G
(

λi∗
t

)
+ γι

t

}
, (22b)

respectively, where γi
t is the Lagrange multiplier on (15). As in the FOC for the second subpe-

riod (20), returns on balance sheet positions consist of pecuniary components and convenience
yields, the terms in braces. Reserves always earn a higher convenience yield than other assets
since they are better collateral (ρA < 1).

Convenience yields on bank asset positions arise whether or not there is a positive spread
between interbank and reserve rates. This is because bank assets are always valuable as col-
lateral to back inside money. To see this, suppose that iF

t = iM
t . Liquidity management – that

is, the allocation of funds to reserves or interbank positions on the right hand side of (13) – is
then irrelevant for bank profits. It is therefore optimal for banks to issue as much money as the
worst case leverage constraint (15) allows. In the FOC (22), all terms involving the liquidity
shock distribution vanish and spreads on bank assets are proportional to the multiplier γt on
that constraint.

If instead banks face a positive cost of liquidity iF
t − iM

t > 0, then pecuniary and nonpecu-
niary returns on bank assets depend on the distribution of liquidity shocks. On the one hand,
the pecuniary return on reserves is stochastic: with probability G(λ∗), banks are constrained
and earn only the reserve rate instead of the higher interbank rate iF

t . On the other hand, the
shadow value of reserves as collateral – the term in braces in (22a) – depends on how often
the leverage constraint binds. In particular, it sums up the expected multiplier on (14) as de-
rived in (20), and the multiplier on (15). For other assets, the pecuniary return is simply the
interest rate and the convenience yield is a share ρA of that on reserves, due to lower collateral
quality.11

Deposit pricing. The bank’s first order condition for deposits is

ηb − 1
ηb

(
iS
t − iD

t

)
=
(

iS
t − iM

t

) M
D

+
(

iS
t − iA

t

) A
D

. (23)

The "good" banks offer to households is liquidity, priced via the spread iS
t − iD,i

t . Monopolis-

11The same principle governs the pricing of interbank loans. Indeed, (22a) can be rearranged to take the same
form as (22b), but with iA

t and ρA replaced by iF
t and ρF, respectively.
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tically competitive banks price liquidity at a markup over marginal cost, the term in braces.
Marginal cost in turn is a weighted average of spreads on the two collateral assets used to
back deposits. It follows that the typical collateral asset also earns a lower pecuniary return
than the short rate. Competition between banks for collateral assets implies that those assets
inherit part of the liquidity benefit conveyed by deposits.

Equilibrium. In an equilibrium with a given pair of interest rates, the supply of reserves pro-
vided by the central bank must be large enough to meet banks’ demand for holding reserves
overnight. From Proposition 4.1, that demand comes from all banks with liquidity shocks
below λ∗t , that is, banks with large enough deposit inflows. Since liquidity shocks are iid we
derive a market clearing condition by integrating over the cross section of banks to arrive at

1− ρF`

` (1− ρF)

∫ λ∗t

−λ̄

(
λ∗t − λ̃

)
dG
(
λ̃
)
≤ Mt

Dt
, (24)

with equality if iF
t > iM

t . If iF
t = iM

t , banks are banks’ aggregate demand or reserves is set-
valued so market clearing becomes an inequality. In either case, Walras’ law implies that
reserve market clearing implies that the interbank funds market also clears.

The money multiplier is negatively related to the threshold shock λ∗ and hence the prob-
ability that banks have to hold cash overnight. Indeed, the derivative of the bracket on the
left hand side is G (λ∗) > 0. Intuitively, if banks hold fewer reserves relative to money, then
less cash is available for the sector overall to withstand liquidity shocks. As a result, the
equilibrium probability of holding cash overnight must decline.

To sum up, an equilibrium in fixed income markets is characterized by the two first order
conditions for bank assets (22), the deposit pricing condition (23), and the market clearing
condition (24), with λ∗ defined by (18). As long as (15) does not bind, these four equations
determine the four unknowns (At/Dt, Mt/Dt, iA

t ) and iD. If (15) does bind, it serves as a fifth
equation and the fifth unknown is the multiplier γt. We are now ready to state the main result
of this section:

Proposition 4.2 (Equilibrium in fixed income markets). If the support bound of the liquidity shock
distribution λ̄ is sufficiently small, then

(a) for any reserve rate iM
t and interbank rate iF

t such that iM
t < iF

t < iS
t , there is a unique

equilibrium in fixed income markets,

(b) there is a threshold interbank rate iF∗
t ∈ (iM

t , iS
t ) such that the reserve-deposit ratio is strictly

decreasing in the interbank rate iF for iF
t > iF∗

t and constant at Mt/Dt = m, say, for iF
t ≤ iF∗

t

(c) for any iM
t = iF

t < iS
t , there is a continuum of equilibria in fixed income markets, indexed by an
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interval for the reserve-deposit ratio Mt/Dt ∈ [m, m̄].

(d) as the support bound λ̄ of the liquidity shock distribution converges to zero, we have `Mt/Dt +

ρA`At/Dt → 1, Mt/Dt → 0 for all iF
t > iM

t , and, in particular, m→ 0.

The structure of equilibria is displayed in Figure 2. We show the "liquidity ratio" of reserves
to deposits M/D on the horizontal axis and the interbank rate on the vertical axis. At high
interbank rates, the liquidity ratio is strictly decreasing in the interbank rate. We refer to
equilibria in this region as elastic. When we consider the full model below, they obtain when
the central bank runs a corridor system: it chooses the quantity of reserves to implement a
target interbank rate. At a low enough interbank rate, the liquidity ratio is still unique but no
longer responds to the interest rate. Finally, when the interbank rate equals the reserve rate,
many balance sheet ratios above a lower bound are consistent with equilibrium. This region is
relevant in a floor system: the quantity of reserves becomes a separate policy instrument that
selects equilibrium in fixed income markets.

quantity of reserves

iM
iF*in

te
re

st
 r

at
e

Figure 2: Structure of equilibria.

The shape of the curve in Figure 2 follows from banks’ first order conditions. Formally,
elastic equilibria are such that the worst case leverage constraint (15) is slack, that is, banks
lend out reserves in the interbank market even when they receive the largest possible deposit
inflow. Intuitively, when banks’ cost of liquidity iF

t − iM
t is sufficiently large, banks are eager to

avoid it. Liquidity management is then about changing how often it binds, leading to an elastic
response. At a low cost of liquidity, banks’ asset positions are determined by the need to avoid
the worst case leverage constraint (15). That constraint must also be respected when iF

t = iM
t .

However, at a zero cost of liquidity, it is no longer crucial to hold as few reserves as possible, so
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any liquidity ratio that allows the bank to satisfy (15) while maintaining nonnegative holdings
of other assets is also optimal.

While the shape of the equilibrium schedule depends on the relative frequency of liquidity
shocks, it does not depend on their scale. It is intuitive that there must be some upper bound
on the size of the shocks to make banking profitable. The important feature for our purposes is
that there does not have to be a lower bound: our results hold even if liquidity shocks are very
small. In a corridor system, excess reserves can therefore be tiny compared to the quantity of
inside money, as in the data. In fact, our analysis below considers the "reserveless limit" where
the support of liquidity shocks goes to zero.

Elastic equilibria To prepare integration with the full model, consider in more detail how
banks respond to interest rates in an elastic equilibrium. We consider responses near a steady
state where all rates and balance sheet ratios are constant. We can linearize the first order con-
dition for reserves (22a) around a steady state with γt = 0, substitute for λ∗ from its definition
and for the liquidity ratio from market clearing (24). We then obtain in the neighbourhood of
an elastic equilibrium

d̂t − âr
t = ε

(
iS
t − iF

t
δ− rF −

iF
t − iM

t
rF − rM

)
; ε :=

(1− ρF`) D
ρA A

(1− ρF + ρFG (λ∗))

1− ρF

G (λ∗)

g (λ∗)
, (25)

where all variable values are at the steady state. In particular, the statistic ε describes the
interest elasticity of deposit supply. A higher policy rate iF

t – other things equal – lowers the
banks’ supply of money. The strength of this effect depends on the distribution of liquidity
shocks, as well as on central bank operating procedures.

Banks’ response can be decomposed into two effects, captured by the two spreads in (25).
First, a higher spread between the short rate and the interbank rate reflects the multipliers on
the leverage constraint, or the cost of collateral. Indeed, in an elastic equilibrium, (22) implies

iS
t − iF

t =
ρF

ρA

(
iS
t − iA

t

)
(26)

In other words, interbank loans are valued as collateral with quality ρF. When collateral assets
earn a lower return, banks optimally increase leverage in order to maintain the same return
on equity.

Second, a higher spread between the interbank and reserve rates means that the cost of liq-
uidity – the cost of holding reserves at the constraint – is higher. In response, banks optimally
reduce leverage. This effect shows that the nature of the corridor implemented by the central
bank matters for policy transmission. In a system where the reserve rate is pegged at, say,
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zero and thus far below the target interbank rate, a hike in the target that leaves the reserve
rate unchanged leads to a stronger response on the part of banks. If instead the reserve rate
moves in lockstep with the target – so the width of the corridor remains constant – we have a
weaker effect.

4 Monetary policy with a banking system

We now turn to equilibria of the full model. Here we integrate the bank module of Section
3 with the standard household and firm behavior from Section 2. The only extra ingredients
we need to specify are government policy and the supply of other assets available to banks.
The government chooses paths or rules for the policy rates iF

t and iM as well as the supply of
reserves Mt. To pin down the ratio of reserves to deposits even when iF

t = iM
t , we allow for

the same class of rules for reserves that we considered for the entire money stock in (3):

Mt

Pt
= Mr + µ

Pt−1

Pt

(
Mt−1

Pt−1
−m∗

)
. (27)

In particular, the government commits to a long run quantity of real balances Mr > 0. We
further assume that the real supply of other assets is given by an exogenous path Ar

t , so in
equilibrium At = Pt Ar

t . Concretely, we can think of firms or the government issuing a fixed
amount of debt in real terms.12

An equilibrium of the full model now consists of household, firm and bank plans as well
as wages, prices and interest rates such that agents optimize and all goods and asset markets
clear. In particular, the bank balance sheet ratios At/Dt and Mt/Dt as well as interest rates
on other assets and deposits iA

t and iD are part of an equilibrium in fixed income markets, as
defined in Section 3. Throughout this section, we work directly with the limiting case where
the support of the liquidity shock distribution λ̄ goes to zero. We know from Proposition 4.2
that real balances are then given by Dt/Pt = Mt/Pt + ρA`Ar

t , and that Mt/Pt is negligible if
iF
t > IM

t .

4.1 Steady state with floor and corridor system

Inflation is determined by interest rate targeting: the government can implement a given infla-
tion rate with either a corridor or a floor system. Suppose the government chooses steady state

12The only other element of the model that is affected is profits in the household budget constraint, which
add up firm and bank profits. Since households and firms operate in frictionless equity markets, their marginal
conditions are unaffected. A richer model could make the demand for bank loans endogenous, and possibly
responsive to the state of the economy. We choose to work with exogenous rules to maximize transparency.
Fixed debt is a baseline scenario motivated by the fact that bank assets tend to adjust slowly to shocks.
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policy rates iF and iM. We distinguish two types of steady state equilibria based on the spread
between the two. An equilibrium with a corridor system satisfies iF > iF∗, so partial equilibrium
in fixed income markets implies reserves and rates in the downward-sloping region for re-
serve demand in Figure 2. In contrast, an equilibrium with a floor system is such that iF = iM. In
both cases, steady state output and inflation must satisfy (4), which does not depend on the
banking system.

Proposition 4.3 (Steady state equilibria)

(a) For any inflation rate π, there is a target for the interbank rate iF such that for any sufficiently
small interest rate on reserves iM, there exists a steady state equilibrium with a corridor system and
inflation rate π.

(b) For any inflation rate π and any parameters Mr > 0 and µ < 1 of the reserve supply rule (27),
there is an interest rate on reserves iM such that there exists a steady state equilibrium with a floor
system and inflation rate π.

The key to this result is that, under either system, the government effectively controls
households’ steady state cost of liquidity iS − iD. This because interest rate policy and the
provision of safe reserves jointly determine banks’ marginal cost of producing money, that is,
the average convenience yield of assets banks hold to back money on the right hand side of
(23). Since the short rate is equal to the rate of time preference iS = δ in the long run, interest
rate policy sets steady state spreads on reserves and Fed funds. At the same time, the spread
on other bank assets reflects those policy spreads to ensure absence of arbitrage, as required
by the bank first order conditions (22). Moreover, the ratios M/D and A/D are pinned down
by policy and the fact that banks’ leverage constraints bind.

The result underscores the similarity between the CBDC model and the model with banks.
In both cases, the policy rate that is consistent with zero inflation is not the rate of time
preference but instead reflects the convenience yield on money. In the CBDC model, this
follows directly because we identify the policy rate with the interest rate on money. In the
model with banks here, the policy rate is a rate on short bonds that back money, so the same
basic logic applies.

4.2 Linearized model

As for the economy without banks in the previous section, we study linear dynamics around
a steady state with zero inflation. Equilibrium with banks is characterized by a system of
linear difference equations that is very similar in structure to that for the simple model in
Section 2. In fact, the nonbank private sector equations – that is, the Phillips curve and Euler
equation (6) as well as household money demand (8) – continue to hold exactly as before.

31



What is new is that the interest rate on money as well as its real quantity are endogenous, and
policy affects the market for money indirectly via the interbank loan and reserves markets.
We thus replace (8) and the exogenous money supply rule by a new block of equations that
describes equilibrium in the market for money. This block depends on central bank operating
procedure.

Equilibrium with a floor system . The dynamics around a steady state with a floor system
are given by

iS
t − iD

t =
ηb

ηb − 1
1
`

(
iS
t − iM

t

)
, (28a)

iS
t − δ = iM

t − rM +
δ− rM

η

(
p̂t + ŷt − d̂t

)
, (28b)

d̂t − p̂t = αm(m̂t − p̂t) + (1− αm)âr
t , , (28c)

m̂t − p̂t = µ (m̂t−1 − p̂t−1 − ∆ p̂t) . (28d)

where αm := Mr/(Mr + ρA Ar) is the steady state quality-weighted share of reserves on banks’
balance sheets. Here the first equation follows from (22) and (23) using the fact that γt = 0,
the second is derived by substituting the first into (8) and the third is the linearized worst case
leverage constraint (15).

In a floor system, the central bank has two policy instruments. The interest rate on reserves
affects banks’ marginal cost of producing money, or the spread between the short rate and the
rate on collateral assets, one of which is reserves. This spread is passed through to households
with a markup, as in (28a).13 Interest rate policy thus affects households’ cost of liquidity very
much like in the CBDC model above. In fact, the interest rate pass-through equation (28b) is
exactly analogous to the CBDC pass-through equation (8), only the name of the policy rate
has changed. The second policy instrument is the supply of reserves (28d), which directly
translates into changes in the supply of money as in (28c).

Equilibrium with a corridor system . The dynamics around a steady state with a corridor

13Moreover, the cost channel coefficient χ defined in (7) thus depends on the policy rate and bank leverage via
the steady state version of the deposit pricing equation (28a).
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system are given by

iS
t − iD

t =
ηb

ηb − 1
1
`ρF

(
iS
t − iF

t

)
(29a)

iS
t − δ = iF

t − rF +
δ− rF

η

(
p̂t + ŷt − d̂t

)
, (29b)

d̂t − p̂t =
η

η + ε
âr

t +
ε

η + ε

(
ŷt −

η

rF − rM

((
iF
t − iM

t

)
− (rF − rM)

))
(29c)

Here the first equation comes from substituting for iA
t in (23) from (26), the second follows

from substituting for iD in (8) from the first and the third follows from substituting for iS
t in

the second from (25). Since reserves are not an independent policy tool, there is no equation
for their evolution.

Banks’ pricing of money and pass-through from the policy rate to the short rate work
qualitatively in the same way as with CBDC or a floor system. The only difference between
the first two equations in (29) and (28) is that the policy rate is now the interbank rate iF

t .
The general principle is that the pricing of money depends on the cost of collateral for banks,
which in turn is represented by the policy spread. The new feature with a corridor system
is that banks’ supply of money responds elastically to income and interest rates, as in (29c).
The strength of the response depends on the distribution of liquidity shocks via the elasticity
ε defined in (25). If ε = 0 and iF

t = iM
t then the corridor system equations reduce to those for

a floor system with a negligible supply of reserves.

How does an elastic money supply affect the transmission of interest rate policy? Suppose
the central bank tightens by increasing the target for the interbank rate. As banks face higher
costs of managing liquidity, they reduce the money supply so as to become constrained less
often – the threshold shock λ∗t declines. The reduction in deposits allows banks to economize
on reserves, which carry a high opportunity cost. The central bank thus reduces the supply of
reserves in order to implement the higher interbank rate. In fact, a decline in the threshold λ∗

lowers the ratio of reserves to money and increases the ratio of other assets to money – banks
become less liquid and better collateralized.14

Banking, CBDC and the standard model

To compare both policy regimes and models, it is helpful to substitute out for real balances

14Formally, the optimal threshold λ∗ is determined from (22) with γt = 0. For the market to clear, (24) requires
that the ratio M/D declines. From the definition of λ∗, A/D must increase in order for λ∗ and M/D to both
decline.
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in the pass-through equation for the corridor system (29b) to obtain

iS
t − δ = iF

t − rF +
δ− rF

η + ε
(ŷt − âr

t) +
ε

η + ε

δ− rF

rF − rM

(
iF
t − iM

t − (rF − rM)
)

.

For given elasticity of money demand η, the elasticity of deposit supply ε locates the corridor
model on a spectrum between the model with a floor system and the standard New Keynesian
model. Indeed, if ε is close to zero, the policy spread depends only on the convenience yield.
In contrast, as ε becomes large, the government directly controls the short rate in the household
stochastic discount factor. If moreover the corridor is of fixed size, that is, the spread iF

t − iM
t

is constant, then the second term vanishes; as a result the model converges exactly to the
standard model as ε becomes large.

Consider now the relationship between the banking model and the CBDC model of Section
2. The CBDC model features a pass-through equation and hence qualitatively captures the fact
that policy works through a convenience yield. As a result, it serves as a "reduced form" that
approximates well the dynamics of the banking model. In particular, the banking model with a
fixed size corridor can be viewed as a special case of the CBDC model with a higher elasticity
of money demand η + ε and a special money supply rule that simply fixes real balances.
Moreover, the banking model with a floor system can be viewed as a special case of the CBDC
model with money demand elasticity eta and a money supply rule that reflects the presence
of a nontrivial quantity of reserves in bank assets.

An important quantitative difference between both models and the CBDC model is that
the steady state spread between the short rate and the policy rate is smaller than that between
the short rate and the interest rate on money. We thus expect the dampening mechanism from
above to be weaker here, especially when utility is separable. At the same time, the strength of
the cost channel, as captured by the coefficient χ, continues to reflect only the average cost of
liquidity for households δ− rD. For the cost channel, it is not relevant how money is produced
and what policy rate banks face; all that matters is the private sector cost of liquidity. As
we will see in the numerical examples below, this effect can generate large differences to the
standard model.

The role of bank market power. How does bank market power affect the transmission of
policy? The dynamics of the model are qualitatively unchanged if market power is omitted.
There is however one key change to the system of difference equations: the cost channel
coefficient χ incorporates the markup via the steady state version of (23). With separable
utility, this matters only for the deposit rate – there is no direct effect on the dynamics of the
convenience yield on short bonds. More generally, when a cost channel is present (η < σ),
then a larger markup increases the sensitivity of firms’ marginal cost to households’ cost of
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liquidity. It follows that market power accentuates the difference between interest rate policy
in our bank model versus the standard New Keynesian model.

Determinacy of equilibrium. An equilibrium is a solution to the system of difference equa-
tions consisting of (6), and either (28) or (29). Appendix A.1 shows that Propositions 2.1 and
2.2 also hold for these systems. The general condition for determinacy is again that the long
run response of the short rate to inflation is larger than one. For easier comparison, we write
one condition for a general steady state policy rate rP:

LR(iS, ∆ p̂) =
δ− rP

η + ε

(
αmµ

1− µ
+

1− β

λ(ϕ + σ−1)

)
+

(
φπ + φy

1− β

λ(ϕ + σ−1)

)(
1 +

δ− rP

η + ε

ε

δ− rM

)
+

(
1
η
− 1

σ

)
χ

ϕ + σ−1
η

η + ε

(
φπ − 1− φy

(
ε

δ− rM +
αmµ

1− µ

))
.

This condition applies to the floor system equilibrium for rP = rM and ε = 0 and to the
corridor system equilibrium for rP = rF and αM = 0.

While the forces generating stability are broadly the same as in the CBDC model above,
details now depend on features of the banking system. In the separable case (the first line),
stability can come from either a strong convenience yield effect or aggressive response to
inflation and output. In a floor system, nominal rigidity in the supply of reserves as measured
by µ strengthens the stabilizing role of the convenience yield, and more so the larger is the
share of reserves on banks’ balance sheet (larger αm).15 In a corridor system (ε > 0), that role
is weaker. Moreover, the parameter χ defined in (7) is higher for a given policy spread, δ− rP,
since it incorporates banks’ markup, which strengthens the cost channel. If policy sets a peg,
markups thus increase the scope for multiplicity; they further make a response to inflation
more effective and a response to output less effective.

Bank assets, loan shocks and quantitative easing. A shock to the supply of other assets –
say because bank borrowers become more constrained – works like a contraction of the money
supply. It increases the convenience yield on money, and thereby also the convenience yield on
reserves: as other assets become more scarce, reserves become more valuable as collateral to
back broad money. From (28b), pass-through increases the shadow rate even if the central bank
does not change the policy rate. Negative loan shocks thus generate a recession with deflation.
While we have varied only the quantity of other assets At here, an exogenous change in their
quality as measured by ρA would work in much the same way. For example, an announcement

15The more general point here is that any nominal rigidity can contribute to stability. Appendix A.1 actually
also covers the case in which all assets are nominal and evolve according to a feedback rule analogous to (3). It
serves to show that nominal rigidity in the stock of non-reserve government debt or even private nominal debt
can help ensure stability, in either system.
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that ratings of bank assets are worse than expected, would reduce quality-adjusted collateral
supply, thereby reducing deposit supply and so increasing the convenience yield on money.

We can also use the model to think about unconventional balance sheet policies of the
central bank in a floor system. Consider two examples. First, a swap of high quality reserves
for other nominal assets of lower quality on bank balance sheets is described by dA = −dM
and hence ât = − (M/A) m̂t so the change in the money supply from (28c) is

d̂t = αmm̂t − (1− αm)
M
A

m̂t = (1− ρA) αmm̂t.

The substitution of good for bad collateral thus increases the money supply and stimulates
the economy, and more so if the collateral purchased by the central bank is of worse quality.

As a second example, consider a central bank purchase of assets not held by banks. In
terms of our model, such bonds are held directly by households. The purchase of such bonds
thus works mechanically like a "helicopter drop" of reserves: there is an increase in Mr not
accompanied by a drop in other bank assets Ar. The central bank intervention effectively in-
creases the collateral available to back inside money. The policy thus stimulates the economy
even more than a purchase of assets held by banks. We recognize that to draw stronger con-
clusions here requires a more explicit model of why some assets are held within the banking
system while others are not.16 We can already see however, that even in a richer model a key
determinant of the power of unconventional policy is in how it changes bank collateral assets
and their convenience yield.

4.3 Numerical example

We provide a numerical example to show that deviations from the standard model as well
differences between operating procedures can be potentially significant. We assume again
that the central bank runs a Taylor rule with interest rate smoothing (12) with a coefficient 1.5
on inflation and .5 on the last interest rate. We also assume that other bank assets are real
and constant. To compute steady states for either operating system, we need to select two
new parameters: the average spread δ− rP between the short rate and the policy rate and the
markup factor that links the reserve and deposit spreads.

We assume that the rate on short bonds targeted by the central bank – regardless of oper-
ating procedure – is the same as the historical average of the US federal funds rate of 4.6% per

16Such a model might add additional institutions or intermediaries such as pension funds, insurance compa-
nies, or foreign central banks that value certain assets more than banks, and hence bid down their prices, making
them unattractive as collateral to back inside money. The unconventional policy provides a way to circumvent a
situation with endogenously segmented markets.
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year. As in the calibration of the CBDC model above, we identify the short rate in households’
the stochastic with the average short rate of 4.9% per year from the term structure model in
Gurkaynak, Sack and Wright (2007). The average spread δ − rP is 30 basis points. With an
MZM own rate of 2.5% per year, the markup factor must then be about 8. Our exercise does
not identify the extent to which the markup is due to market power as opposed to leverage
or the weight on fed funds. It is plausible that ` and ρF are relatively close to one, so that χ

mostly reflects market power. For this reason we work with the same value for both systems.
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Figure 3: Impulse responses to a one time 25bp monetary policy shock; Taylor rule with
coefficient 1.5 on inflation and .5 on past interest rate. Top three panels: percent deviations
from steady state; bottom three panels: percentage point deviations from steady state. Spreads
are differences between shadow rate and policy rate (solid lines) and difference between policy
rate and deposit rate (dotted line).

Consider first the floor system. We set the share of reserves in bank assets to 15% to
capture the aftermath of a sizeable QE operation. Figure 3 shows responses to a one time
contractionary monetary policy shock that increases the interest rate on reserves by 25bps.
The panels look essentially the same as those for the CBDC model in Figure 1. This is even
though the pass-through coefficient in (28b) is much smaller in size. The reason is that the
strength of the cost channel has not changed: it continues to be driven by households’ cost of
liquidity. The smaller policy spread is therefore not important for magnitudes. As long as the
policy spread is positive, the convenience yield channel is active and the dampening effects
explained above are relevant.

For the corridor system exercises, we also need values for the reserve rate and the supply
elasticity ε. We set the reserve rate to zero. Banks’ cost of liquidity rF − rM is thus equal to the
average policy rate of 4.6% per year. The calibration is consistent with the fact that banks’ cost
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of liquidity was typically above households’ cost of liquidity of δ− rD of 2.4% per year in the
regime with scarce reserves before 2007. The elasticity ε cannot be identified from steady state
moments alone. We choose the value ε = .24 based on the properties of the impulse response:
we require that a one percent increase in the policy rate goes along with a 50bp increase in the
deposit rate. This order of magnitude is consistent with the numbers reported by Drechsler,
Savov and Schnabl (2017).
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Figure 4: Impulse responses to a one time 25bp monetary policy shock; Taylor rule with
coefficient 1.5 on inflation and .5 on past interest rate. Top three panels: percent deviations
from steady state; bottom three panels: percentage point deviations from steady state. Spreads
are differences between shadow rate and policy rate (solid lines) and difference between policy
rate and deposit rate (dotted line).

Figure 4 shows responses to a one time contractionary monetary policy shock that increases
the interbank rate by 25bps. Qualitatively, the shape of responses for output and inflation are
now hard to distinguish from those of the standard model. Moreover, the money response is
also similar as banks reduce deposits. The calibrated interest elasticity is thus high enough
so as to make bank liquidity cost important. At the same time, there is still some dampening
in the impulse response for output – the cost channel remains strong. The bottom left panel
reports the spreads iS − iD as a solid line as well as iF − iD as a dashed line. Due to the small
shadow spread, the two are almost identical. Calibrating to larger increases in the deposit
spread – that is, more inert behavior of the deposit rate – would increase ε and drive the
corridor model closer to the standard model.
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A Appendix

A.1 Characterization of equilibrium in the CBDC model

In this appendix, we collect derivations and proofs for the CBDC model of Section 2.

A.1.1 Household first-order conditions

The maximization problem of the household is:

max
{Ct,Dt,St,Nt}

∞

∑
t=0

βt 1
1− 1

σ

[
C

1− 1
η

t + ω

(
Dt

Pt

)1− 1
η

] 1− 1
σ

1− 1
η

− ψ
N1+ϕ

t
1 + ϕ

s.t.
PtCt + Dt + St ≤WtNt + Tt + Πt + (1 + iD

t−1)Dt−1 + (1 + iS
t−1)St−1.

It is helpful to introduce notation for the bundle of consumption and liquidity services
consumed by the household; we define

Bt :=

[
C

1− 1
η

t + ω

(
Dt

Pt

)1− 1
η

] 1
1− 1

η

.

Denoting the Lagrange multiplier on the budget constraint by λt, the household first-order
conditions for consumption, money, other assets and labor are

B
( 1

η−
1
σ )

t C
− 1

η

t = λtPt,

B
( 1

η−
1
σ )

t ω

(
Dt

Pt

)− 1
η

= λtPt − β(1 + iD
t )PtEt [λt+1] ,

λt = βEt [λt+1] (1 + iS
t ),

ψNϕ
t = λtWt.

To obtain a "money demand" relationship that is often studied in the empirical literature,
we simplify the FOC for money by substituting for λtPt from the FOC for consumption and
for Et [λt+1] from the FOC for other assets:

Dt = PtCt ωη

(
iS
t − iD

t

1 + iS
t

)−η

. (A.1)
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The marginal rate of substitution of consumption for real balances must be equal to the relative
price of liquidity services provided by money, or the opportunity cost of money. Since utility is
homogenous of degree one in consumption and money, households hold money in proportion
to nominal spending PtCt. Moreover, money holdings are decreasing in the opportunity cost of
money, here the spread between other assets and money iS

t − iD
t . The elasticity of substitution

η works like an interest elasticity of money demand.

The ideal price index for a bundle of consumption and liquidity services from money given
by

Qt :=

1 + ωη

(
iS
t − iD

t

1 + iS
t

)1−η
 1

1−η

. (A.2)

This ideal price index is measured in units of consumption. Since the household cares about
bundles, as opposed to only consumption goods, labor supply depends on the real wage
measured in units of bundles, Wt/PtQt. A higher spread iS

t − iD
t thus not only increases the

price of liquidity services, but also lowers the price of leisure. At the same time, it affects the
household’s savings decision by increasing the real return on assets in units of bundles, that
is, (1 + iS

t )PtQt/Pt+1Qt+1: future consumption bundles become relatively cheaper.

We can use the money demand equation to substituting out for real balances Dt/Pt in the
bundle Bt

Bt =

[
C

1− 1
η

t + ω

(
Dt

Pt

)1− 1
η

] 1
1− 1

η

=

1 + ωη

(
iS
t − iD

t

1 + iS
t

)1−η
 1

1− 1
η

Ct

= Q−η
t Ct.

When consumption and money are complements, an increase in the opportunity cost of money
lowers the marginal utility of consumption.

The consumption FOC can now be rewritten as

Q
η
σ−1
t C−

1
σ

t = λtPt. (A.3)

Moreover, household labor supply (A.4) follows by combining the consumption and labor
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FOCs to substitute out λt:

Q1− η
σ

t C
1
σ
t ψNϕ

t =
Wt

Pt
. (A.4)

When consumption and money are complements, an increase in the opportunity cost of money
lowers labor supply relative to consumption. Indeed, the first-order conditions imply a second
intratemporal Euler equation that links the marginal rate of substitution of labor for consump-
tion to the real wage. In the separable case, the optimal choice of labor relative to consumption
depends only on the relative price between these two goods: the real wage in units of con-
sumption. When money and consumption are complements, in contrast, an increase in the
opportunity cost of money makes consumption less attractive and leads households to take
more leisure. Relative to the standard model, there is a "labor wedge" that is increasing in the
opportunity cost of money.17 This cost channel was emphasized in early flexible price DSGE
models, but has received less attention in the new Keynesian literature.

Substituting out λt from (A.3) we arrive at an intertemporal Euler equation for the shadow
rate. It relates the marginal utilities of consumption at different dates to interest rates:

βEt

[(
Qt+1

Qt

) η
σ−1(Ct+1

Ct

)− 1
σ Pt

Pt+1

] (
1 + iS

t

)
= 1. (A.5)

Optimal savings implies that the discounted gross rate of return on assets is equal to one. In
the nonseparable case, discounting by the marginal rate of substitution reflects the expected
change in the opportunity cost of money. In particular, when money and consumption are
complements the household acts as if he discounts the future more when the opportunity cost
of money is temporarily lower: cheap liquidity today encourages consumption today.

Combining (A.1) and (A.5), we can write an analogous intertemporal Euler equation for
money. It clarifies that money is valued not only for its payoff, but also earns a convenience
yield:

βEt

[(
Qt+1

Qt

) η
σ−1(Ct+1

Ct

)− 1
σ Pt

Pt+1

] (
1 + iD

t

)
+ ω

(
PtCt

Dt

) 1
η

= 1. (A.6)

The total return on money on the left hand side now consists not only of the pecuniary rate of

17With elasticities below one (η < σ ≤ 1), competing income effects determine the labor wedge. These income
effects dominate both the choice between consumption and liquidity services, and the choice between bundles
and labor. A higher spread today makes liquidity services more expensive and, with a strong income effect,
reduces consumption. A higher price for liquidity services also makes leisure cheaper and, with a strong income
effect, increases demand for the bundle which includes more consumption. With separable utility, the two forces
exactly cancel, and we obtain the Euler equation for labor from the standard model. Complementarity between
money and consumption (η < σ) makes the income effect from the cost of liquidity stronger: a higher spread
today thus leads the agent to consume relatively less and take relatively more leisure.
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return (again appropriately discounted) but also adds a nonpecuniary benefit that is increasing
in the velocity of money Vt := PtCt/Dt: if spending is high relative to money, shopping is more
of a hassle and the convenience yield – the marginal benefit of additional money – is higher.
The response of the convenience yield to velocity is stronger if the interest rate elasticity of
money demand η is lower.

A.1.2 Linearization.

We follow the literature in writing log deviations from steady state in gross rates of return as
deviations from steady state in net returns. For example, the gross return on money deposits
is 1 + iD

t , and we write the log deviation from the steady state rate as

log
(

1 + iD
t

)
− log

(
1 + iD

)
≈ iD

t − iD.

This approximation is justified if rates of return are small, as is the case in our quarterly model
with riskfree assets.

For money demand, we simplify notation by performing an additional approximation:

v̂t ≈ η
1 + rD

δ− rD (iS
t − iD

t − (δ− rD) ≈ η

δ− rD (iS
t − iD

t − (δ− rD). (A.7)

The first equality is justified by loglinearizing and expressing rates of return in net levels, as
explained above. The second equality is justified by recognizing that the small steady state
return rD multiplies small spreads iS

t − iD
t and so we treat the product as second order.

The derivation of the New Keynesian Phillips curve and Euler equation follow the textbook
treatment by Gali (2008). The Phillips curve relates the growth rate of the price level to future
price growth as well as marginal cost:

∆ p̂t = βEt∆ p̂t+1 + λm̂ct.

Since labor is the only factor of production and we abstract from the productivity shock,
marginal cost variation is only variation in wages, that is, m̂ct = ŵt.

To find the variation in wages, consider first the effect of the cost of liquidity on the price

of a bundle of consumption and liquidity. We write Zt =
iS
t −iD

t
1+iS

t
for the price of liquidity and
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find

q̂t =
ωηZ1−η

1 + ωηZ1−η
ẑt

=
ωη
(
δ− rD)1−η

(1 + δ)1−η + ωη (δ− rD)
1−η

ẑt

=
ωη
(
δ− rD)1−η

(1 + δ)1−η + ωη (δ− rD)
1−η

η−1v̂t

=
ωη
(
δ− rD)1−η

(1 + δ)1−η + ωη (δ− rD)
1−η

1
δ− rD (iS

t − iD
t − (δ− rD)

=
χ

δ− rD (iS
t − iD

t − (δ− rD),

where the second and third line substitute for the steady state price Z and the log deviation ẑt,
respectively, from (A.1), the fourth line substitutes for v̂t from (A.7) and the fifth line defines
the parameter χ: it measures the response of the price of a bundle to the price of liquidity.

The loglinearized FOC for labor is now

ŵt =
(

1− η

σ

)
q̂t +

1
σ

ŷt + ϕn̂t

=
(

1− η

σ

) χ

δ− rD (iS
t − iD

t − (δ− rD) +
1
σ

ŷt + ϕn̂t

=
(

1− η

σ

) χ

δ− rD (iS
t − iD

t − (δ− rD) +
1
σ

ŷt + ϕn̂t,

where the third line follows from the production function and the fact that we abstract from
productivity shocks, so ŷt = n̂t. Finally, substituting wages for marginal cost, the Phillips curve
takes the form in (6):

∆ p̂t = Et∆ p̂t+1 + λ

(
(ϕ +

1
σ
)ŷt +

(
1− η

σ

) χ

δ− rD (iS
t − iD

t − (δ− rD))

)
.

A.2 Determinacy properties

In this section we study a general system of difference equations that nests all versions of our
model. After introducing notation to write the system in matrix form, we state Proposition A.1
that nests Propositions 2.1 and 2.2 in the text, and also shows that Proposition 2.2 continues to
hold in the bank model of Section 4.

To set up the general system, we denote by v̂t the log deviation of velocity from the steady
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state. We also write iP
t for a generic policy interest rate, iS

t for the shadow rate and n̂t for
exogenous nominal assets. We then consider the following system in (ŷt, v̂t, iP

t , iS
t , n̂t − p̂t):

∆ p̂t = βEt∆ p̂t+1 + λ

((
ϕ +

1
σ

)
ŷt +

(
1
η
− 1

σ

)
χv̂t

)
(A.8)

ŷt = Etŷt+1 − σ(iS
t − Et∆ p̂t+1 − δ) + σ

(
1
η
− 1

σ

)
χEt∆v̂t+1 (A.9)

iS
t − δ = iP

t − rP +
δ− rP

η
v̂t (A.10)

iP
t = rP + φyŷt + φπ∆ p̂t + ut (A.11)

n̂t − p̂t = µ (n̂t−1 − p̂t−1)− µα∆ p̂t (A.12)

v̂t =
η

η + ε
( p̂t + ŷt − n̂t) +

η

η + ε

ε

δ− rM

(
iP
t − rP

)
(A.13)

We are interested in bounded solutions given some initial condition for the real value of
nominal assets n̂−1 − p̂−1.

All equilibria characterized in the paper can be reduced to special cases of this system.
While equilibria also describe other endogenous variables such as the deposit rate or the
interest rate on other assets, those variables are simple functions of iS

t , p̂t and ŷt that are not
important for characterizing determinacy. The first two equations (A.8) and (A.9) are derived
from household and firm behavior and hence hold in all equilibria. They follow from (6)) and
(8) by substituting out the deposit rate iD.

Equations (A.10)-(A.13) differ across models of types of equilibria some of the coefficients
as well as in what interest rate represents the policy rate and what quantity represents exoge-
nous nominal assets (if any). In particular, the system of difference equations in the CBDC
model

, given by (9b), is a special case of the system (A.8) - (A.13), where the policy rate is the
deposit rate iP

t = iD
t , nominal assets are deposits n̂t = d̂t, and we have α = 1 and ε = 0.

The system of difference equations for the model with banks from Section 3 depends on
the type of equilibrium. For an equilibrium with a floor system, given by (6), (28b) and (28c),
is a special case with the policy rate is the reserve rate iP

t = iM
t , nominal assets are deposits

n̂t = d̂t, and we have α = αm and ε = 0. Finally, the system of difference equations for the
model with a corridor system from Section 4, given by (6), (9a) and (29) is the special case
where the policy rate is the interbank rate iP

t = iF
t , and there are no nominal assets so µ = 0

and α is irrelevant.

Substituting out for velocity v̂t and the two interest rates, we have a three equation system
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for inflation, the real value of nominal assets, and output. In matrix notation, it isEt∆pt+1

Etŷt+1

n̂t − p̂t

 = A

 ∆pt

ŷt

n̂t−1 − p̂t−1

+ bt (A.14)

with initial condition n̂−1 − p̂−1 and where bt is a vector of exogenous variables.

To ease notation, we define the non-negative coefficients

B =

(
1
η
− 1

σ

)
χ, γ = δ− rP, κ = λ

(
ϕ +

1
σ

)
,

AV =
η

η + ε
, BV = AV

ε

δ− rM , Γ = β
(

σ−1 + BAV + BBVφy

)
.

We write Aij for the element in the ith row and jth column of A. We thus have A31 = −µα,
A32 = 0, A33 = µ, and the elements in the first two rows are:

A11 =

(
1− µαAVλB− λBBVφπ

β

)
, A12 = −

(
κ + BλAV + BλBVφy

β

)
, A13 =

µB̃AV

β
,

A21 =
β

Γ

[
φπ + BBVφπ +

γµα

η
AV +

γ

η
BVφπ + µα(1− µ)BAV

]
,

− β

Γ

[
(1 + µαBAV + BBVφπ)(

1− αµAV Bλ− BλBVφπ

β
)

]
,

A22 = 1 +
β

Γ

[
φy +

γ

η
AV +

γ

η
BVφy + (1 + µαBAV + BBVφπ)(

κ + AV Bλ + BλBVφy

β
)

]
,

A23 = −β

Γ

[
BAVµ(1− µ) +

µγ

η
AV + (1 + µαBAV + BBVφπ)(

µBλAV

β
)

]
.

To state the proposition, we define the long run responses to a change in inflation. From
the law of motion for the real value of nominal assets, we have

LR(n̂− p̂, ∆ p̂) = − µ

1− µ
∆ p̂

From the Phillips curve, the response of output to inflation is

LR(ŷ, ∆ p̂) =

 (1− β)− B̃BVφπ − B̃AV

(
αµ

1−µ

)
κ + B̃AV + B̃BVφy

∆ p̂
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Finally, using the Taylor rule, (A.11), and the pass-through equation, (A.10), we have that:

LR
(

iS, ∆ p̂
)
= LR(iP, ∆ p̂) + LR(iS − iP, ∆ p̂)

=

(
φπ + AV

γ

η

αµ

1− µ
+

γ

η
BVφπ

)
∆ p̂ +

(
φy +

γ

η
(AV + BVφy)

)
LR(ŷ, ∆ p̂).

We impose throughout (11), written in the notation here as

Condition 1: φyBλ < κγ/η.

Proposition A: Suppose Condition 1 holds. The system of difference equations (A.8) - (A.13) has a
unique bounded solution for any initial condition (n̂−1 − p̂−1) if and only if

LR(iS, ∆ p̂)
∆ p̂

> 1. (A.15)

Proof. We show that the matrix A in (A.14) has exactly one eigenvalue inside the unit circle
if and only if (A.15) holds. We further check the rank condition on A in Blanchard and Kahn
(1980). It then follows that, (A.15) guarantees a unique bounded solution to (A.14).

The characteristic polynomial of A

The eigenvalues of A are the roots of its characteristic polynomial

p(λ) = λ3 − a2λ2 + a1λ− a0

where the coefficients take the form

a2 =

(
1 +

1
β
+ µ

)
+

(
1
Γ

) [
β

γ

η
AV + κ + BλAV(1 + µαφ)

]
+

(
φy

Γ

) [
β(1 +

γ

η
BV) + BλBV

]
+

(
φπ

Γ

)
BλBVφ > 2 (A.16)

a1 =
1 + µ + µβ

β
+

(
1
Γ

) [
(1 + µβ)

γ

η
AV + µκ(1 +

αγ

η
AV) + µAV Bλ(1 + αφ)

]
+

(
φy

Γ

) [
(1 + µβ)(1 +

γ

η
BV)− αµAV Bλ + µBλBV

]
+

(
φπ

Γ

) [
κ + κ

γ

η
BV + BλBV(1 + µ)φ + BλAV

]
(A.17)

a0 =
µ

β
+

µ

Γ

[
γ

η
AV

]
+

µφy

Γ

[
1 +

γ

η
BV

]
+

µφπ

Γ

[
κ(1 +

γ

η
BV) + BλAV + BλBVφ

]
(A.18)
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We note that a2 > 2 and a0 ≥ 0, with strict inequality if and only if µ > 0. Moreover,
Condition 1 implies that a1 > 1. The characteristic polynomial thus has a root at zero if and
only if µ = 0. For µ > 0, Descartes’ rule of signs implies that the polynomial has either one or
three positive real roots and no negative real roots. We thus always have one positive real root.
In addition, there could be two more positive real roots, or there could be a pair of complex
conjugates.

We have p(0) = −a0 and the values of the polynomial at plus and minus one are:

p(−1) = − 2
β
(1 + µ)(1 + β)−

(
1
Γ

) [
γ

η
AV((1 + µ)(1 + β) + µκ) + κ(1 + µ) + BλAV(1 + µ + 2αµφ)

]
−
(

φy

Γ

) [
(1 +

γ

η
BV)(1 + µ)(1 + β) + BλBV(1 + µ)

]
−
(

φπ

Γ

) [
(1 + µ)(κ + BλAV) + κBV

γ

η
(1 + µ) + BλBVφ(2 + 2µ)

]
−
(

1
Γ

)
αµAV

(
κγ

η
− φyBλ

)

p(1) =
(

1
Γ

) [
(1− µ)(κ + BλAV + BVκ

γ

η
)(φπ − 1) + (1− µ)(1− β)(

γ

η
AV + φy(

γ

η
BV + 1))

]
+

(
1
Γ

) [
(αµAV + (1− µ)BV)(κ

γ

η
− φyBλ)

]
Condition (A.15) is equivalent to p(1) > 0. It further implies that p(−1) < 0 for all µ.

Necessity of A.15

We now establish necessity of (A.15). If the difference equation has a unique bounded
solution, exactly one eigenvalue of A is inside the unit circle. In other words, exactly one root
of p(λ) is inside the unit circle. We know that p(−1) < 0. If p(1) ≤ 0, then the polynomial
crosses the horizontal axis within (−1, 1) either twice or never. Thus, it is necessary that
p(1) > 0 i.e. (A.15) holds.

To establish sufficiency, we first show that (A.15) ensures a unique stable eigenvalue, that
is, the condition p(1) > 0 ensures exactly one root of p(λ) lies inside the unit circle. It is
convenient to do this part of the proof in two steps, first for µ = 0 and then for µ ∈ (0, 1].

(A.15) implies a unique stable eigenvalue for µ = 0.
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The case µ = 0 is special because a0 = 0. The three roots (λ1, λ2, λ3) are

λ1 = 0; λ2 =
a2 −

√
a2

2 − 4a1

2
; λ3 =

a2 +
√

a2
2 − 4a1

2

The roots λ2, λ3 are either both real or both complex. If they are both complex or they are
real and equal, then both must lie outside the unit circle since a2 > 2. Assume instead they
are both real and distinct, with λ2 < λ3. We know that λ2 > 1 if and only if:

a2
2 − 4a1 < a2

2 − 4a2 + 4

i.e. 1− a2 + a1 > 0

If µ = 0, (A.15) can be written as p(1) = 1− a2 + a1 > 0. We therefore have λ2 > 1 and
hence also λ3 > 1. It follows that exactly one root, λ = 0, lies within the unit circle.

(A.15) implies a unique stable eigenvalue for µ > 0.

We show next that for any µ ∈ (0, 1], (A.15) also ensures that there is a unique root of p(λ)
inside the unit circle. We know that there can be either one or three roots inside the unit circle.
Indeed, p(1) > 0, given by (A.15), and p(0) < 0 imply that the polynomial has either one or
three real roots in the interval (0, 1). Moreover, if there is a pair of complex roots, those roots
have the same modulus. We thus want to rule out that there are three roots inside the unit
circle. The following result provides restrictions on a cubic polynomial that allows this case:

Lemma A1: Suppose p(λ) = λ3 − b2λ2 + b1λ− b0 is a cubic polynomial with strictly positive real-
valued coefficients b2, b1, b0 that satisfies p(1) > 0. If all roots lie within the unit circle, then the
coefficients satisfy

(a) b0 < 1,

(b) b2
0 − b2b0 + b1 − 1 < 0,

(c) b2 < 2 + b0.

Proof.

Part (a): Denote the three roots by (λ1, λ2, λ3), where λ1 is the smallest real root, and
(λ2, λ3) are either both real roots or both complex roots. Since we can write the polynomial as
p(λ) = (λ− λ1)(λ− λ2)(λ− λ3), we have b0 = λ1λ2λ3. Suppose (λ2, λ3) are real roots. We
know they must both be positive. Since p(0) < 0 and p(1) > 0, we have λ2λ3 ∈ (0, 1) and
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hence b0 < λ1 < 1. If instead (λ2, λ3) are complex roots, then λ2λ3 = |λ2|2 = |λ3|2 ∈ (0, 1)
and again b0 < λ1 < 1.

Part (b): We have

p(b0) = b3
0 − b2b2

0 + b1b0 − b0

= b0

(
b2

0 − b2b0 + b1 − 1
)

.

We show that p(b0) < 0. Since b0 > 0, Condition (b) then follows.

To show p(b0) < 0, suppose first that (λ2, λ3) are both real roots. then both turning points
of p(λ) must be larger than λ1. It follows that p(λ) < 0 for any λ < λ1. From the proof of
part (a), we have that b0 < λ1 and hence p(b0) < 0. If instead (λ2, λ3) are both complex roots,
p(λ) only crosses the horizontal axis once at λ = λ1. Since p(0) < 0, then p(λ) < 0 for any
λ ∈ (0, λ1). As b0 < λ1, again p(b0) < 0.

Part (c): We start from Condition (b) and use our assumption that p(1) = 1− b2 + b1− b0 >

0 to obtain

0 > b2
0 − b2a0 + b1 − 1 > b2

0 − b2a0 + (b2 + b0 − 1)− 1

= b2
0 − (b2 − 1)a0 + (b2 − 2)

= (1− b0)(b2 − 2− b0).

Condition (c) follows because Condition (a) ensures that b0 < 1.�

We now show that Condition 1 does not allow Conditions (a)-(c) of Lemma A1 to hold
jointly for our characteristic polynomial. It then follows that we cannot have three roots inside
the unit circle, and thus have exactly one root inside the unit circle. We first note that there
exists a threshold value µ̄ < β < 1 such that Condition (a) of Lemma A1 is violated for all
µ > µ̄. Indeed, we can always find µ̄ such that a0 = 1. For the remaining case µ < µ̄, we have
the following Lemma:

Lemma A2: Assume that Condition 1 holds. Suppose the characteristic polynomial p(λ) = λ3 −
a2λ2 + a1λ− a0 with coefficients (A.16) - (A.18) satisfies Conditions (a) and (c) of Lemma A1. Then
Condition (b) of Lemma A1 does not hold.
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Proof. Condition (c) of Lemma A1 applied to our characteristic polynomial is given by

− (1/β− 1)(1− µ)− 1
Γ

[
(β− µ)(

γ

η
AV + φy(1 +

γ

η
BV)) + BλAVαµφ + φπ(1− µ)BλBVφ

]
+

1
Γ

[
(κ + BλAV + κ

γ

η
BV)(µφπ − 1) + BV(κ

γ

η
− φyBλ)

]
> 0. (A.19)

To check Condition (b) of Lemma A1, we define the function g(µ) := a2
0 − a2a0 + a1 −

1, where dependence of the coefficients on µ is given by (A.16) - (A.18). In particular, the
coefficients are linear in µ, so the function g(µ) is quadratic in µ. We want to show that
g(µ) > 0 for all µ ∈ (0, µ̄], thus violating Condition (b).

We know from (A.16) - (A.18) that g(0) = a1 − 1 > 0. Since Condition (c) of Lemma A1 is
assumed to hold, we also know

g(µ̄) = a1 − a2

=
1
Γ
(1− µ̄)

[
(κ + BλAV + κ

γ

η
BV)(φπ − 1) + BV(κ

γ

η
− φyBλ)

]
+

1
Γ

[
(1− µ̄)(1− β)(

γ

η
AV + φy(

γ

η
BV + 1)) + αµ̄AV(κ

γ

η
− φyBλ)

]
>

1
Γ

[
(1− µ̄)(1− β)(

γ

η
AV + φy(

γ

η
BV + 1)) + αµ̄AV(κ

γ

η
− φyBλ)

]
> 0,

where the third line uses (A.19) and µ̄ < β, and the last line follows from Condition 1.

It remains to show that the function g(µ) is also positive in the interior of the interval
[0, µ̄]. Since g(µ) is quadratic, it is either concave or convex everywhere. If it is concave, then
g(0) > 0 and g(µ̄) > 0 imply that g(µ) is positive over the entire interval [0, µ̄]. Suppose
therefore that g(µ) is convex. If the derivative of g(µ) at µ̄ is negative, then g(µ) > g(µ̄) > 0
for all µ < µ̄. If instead the derivative of g(µ) at µ̄ is positive, then g(µ) is bounded below by
the function

h(µ) := g(µ̄) + (µ− µ̄)g′(µ̄).

We proceed to show that h(µ) > 0 for all µ ∈ (0, µ̄), hence g(µ) > 0 for all µ ∈ (0, µ̄). As
g′(µ̄) > 0, then h′(µ) > 0, implying that if h(0) > 0, then h(µ) > 0 for all µ ∈ (0, µ̄). This is
what we show.
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The derivative of g(µ) at the point µ̄ is

g′(µ̄) = −( 1
β
− 1)(

1
µ̄
− 1)

−
(

1
Γ

)(
1
µ̄
− 1
)(

β
γ

η
AV + κ + BλAV + φy(β(1 +

γ

η
BV) + BλBV) + φπBλBVφ

)
−
(

1
Γ

)(
αφy AV Bλ− ακ

γ

η
AV + αBλAVφ

)
<
(α

Γ

)
AV

(
κ

γ

η
− φyBλ

)
. (A.20)

Substituting into the definition of h, we have that:

h(0) = g(µ̄)− µ̄g′(µ̄)

> g(µ̄)− ᾱµ

Γ
AV

(
κ

γ

η
− φyBλ

)
>

1
Γ

[
(1− µ̄)(1− β)(

γ

η
AV + φy(

γ

η
BV + 1)) + αµ̄AV(κ

γ

η
− φyBλ)

]
− αµ̄

Γ
AV

(
κ

γ

η
− φyBλ

)
=

1
Γ

[
(1− µ̄)(1− β)(

γ

η
AV + φy(

γ

η
BV + 1))

]
> 0,

where the second line uses the bound from (A.20).�

Blanchard-Kahn Rank Condition

We have shown that (A.15) implies that the matrix A exhibits exactly one eigenvalue inside
the unit circle. By Blanchard and Kahn (1980), this implies a unique bounded solution to
(A.14) as long as a Rank Condition is satisfied. To check this rank condition, let B denote the
matrix of left eigenvectors of A, sorted by their modulus in ascending order. We want to show
that the block corresponding to the predetermined variables is nonsingular. In our context,
this means showing that the top left element of B is different from zero.

Suppose this were not true, that is, we have a left eigenvector (0, x, y) of A that satisfies:[
0 x y

]
= λ1

[
0 x y

]
,

where λ1 is the unique eigenvalue in (0, 1). Consider the second column of the equation. Since
A23 = 0, it reads xA22 = λ1. It cannot hold since A22 > 1 and λ1 < 1. �
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A.3 Characterizing partial equilibrium in fixed income markets

In this appendix we collect derivations needed to characterize partial equilibria in fixed income
markets as discussed in Section 3, as well as the proofs of Propositions 3.1 and 3.2. For easier
notation we drop superscripts indicating individual banks.

A.3.1 Bank market power and deposit demand

In the setup with monopolistic competition, bank i supplies liquidity to households at the
price Zi

t = (iS
t − iD,i

t )/(1 + iS
t ), where iD,i

t is the deposit rate promised by bank i. The spread
iS
t − iD,i

t is interest foregone by investing in deposits as opposed to the shadow rate, discounted
by (1 + iS

t ) as the interest is received next period.

Households value different varieties of deposits according to a CES aggregator with elas-
ticity of substitution ηb. For given individual bank deposit rates iD,i

t and hence liquidity prices
Zi

t, let Zt denote the ideal CES price index that aggregates the individual bank liquidity prices
Zi

t. We then define the ideal average deposit rate iD
t by

iS
t − iD

t

1 + iS
t

= Zt.

Household maximization delivers bank i’s deposit demand function

Di
t =

(
Zi

t
Zt

)−ηb

Dt =

(
iS
t − iD,i

t

iS
t − iD

t

)−ηb

Dt. (A.21)

Writing γt for the multiplier on the leverage constraint, the terms in the Lagrangian involv-
ing the date t deposit rate are

Di
t −

Di
t

1 + iS
t

(
1 + iD,i

t

)
− γtDi

t =
(

Zi
t − γt

)
Di

t.

Shareholder maximization thus works like profit maximization with constant marginal cost γt

via choice of a price Zi
t.

The first order conditions with respect to Zi
t take the standard form

(
Zi

t − γt

)
ηb

(
Zi

t

)−ηb−1 Dt

Z−ηb
t

+

(
Zi

t
Zt

)−ηb

Dt = 0,
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ηb

(
iS
t − iD,i

t

iS
t − iD

t

)−ηb−1
1

iS
t − iD

t

(
1− 1 + iD,i

t

1 + iS
t
− γt

)
Dt −

1
1 + iS

t
Di

t = 0.

A higher price of liquidity lowers profits by decreasing the quantity of deposits, but increases
profits by increasing revenue per dollar issued.

Substituting from the demand function and rearranging, we have

iS
t − iD,i

t =
ηb

ηb − 1

(
1 + iS

t

)
γt.

Bank i chooses a price that multiplies marginal cost by a constant markup.

Combining the reserves and deposits first order condition, we arrive at equation (23):

iS
t − iD

t =
ηb

ηb − 1
`−1

(
iS
t − iM

t

)
.

A.3.2 Proof of Proposition 3.1

A bank’s problem in the second subperiod is to choose M′, F+ and F− to maximize next period
cash

M′
(

1 + iM
)
+
(

1 + iF
) (

F+ − F−
)

,

subject to the budget and collateral constraints as well as nonnegativity constraints on all three
variables.

Assume first that iF > iM. The first order conditions are

1 + iM + γ` = λ− νM′ ,

1 + iF + γρF` = λ− νF+ ,

1 + iF + γ = λ + νF− ,

where γ is the multiplier on the collateral constraint, λ is the multiplier on the budget con-
straint, and the νs are the multipliers on the three nonnegativity constraints.

We distinguish solutions with positive reserve holdings from those with zero reserves.
Suppose first a bank holds no reserves overnight, that is, M′ = 0. The optimal policy is then

F+ − F− = M− λ̀D

In order for the collateral constraint to be satisfied, we must have D−M < `ρA A. The precise
split into F+ and F− is not important in this case – only the net position is determinate.
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Suppose instead a bank holds reserves overnight, that is, M′ > 0 and hence νM′ = 0. We
must have γ > 0: otherwise the fed funds lending and reserves FOC cannot jointly hold.
Indeed, these FOC imply

1 + iF + γρF` ≤ λ = 1 + iM + γ`,

which cannot hold for γ > 0 since we have assumed iF > iM. From the fed funds borrowing
FOC, we must then have νF− > 0 and hence F− = 0.

When the bank holds reserves, we can thus combine the binding collateral constraint and
the budget constraint to find optimal reserve holdings and fed funds lending

M′ =
(
1− λ̃ (1− ρF`)

)
D− ρF`M− ρA`A

` (1− ρF)
,

F+ = M− λ̃D−M′

=

(
M− λ̃D

)
` (1− ρF)−

(
1− λ̃ (1− ρF`)

)
D + ρF`M + ρA`A

` (1− ρF)

=
M`+ ρA`A− (1− λ̃ (1− `))D

` (1− ρF)

We need for this case that M′ is positive and F+ is nonnegative. The first condition is equiva-
lent to λ̃ < λ∗. The second condition is satisfied at any value of λ̃ as long as it is satisfied at
λ̃ = −λ̄. The condition assumed in the proposition says that the second condition is indeed
satisfied at λ̃ = −λ̄.

Finally, consider the case where iF = iM. The bank is indifferent between fed funds posi-
tions and reserves, and any feasible plan is optimal. We are interested in the lowest feasible
reserve holdings. all plans that achieve this lower bound must have F− = 0: if fed funds
borrowing were positive, we could reduce it together with reserves and still satisfy the budget
and collateral constraints. Moreover, the plans must make the collateral constraint bind. It
follows that they are described by the equations for M̃ and F+ above.�

A.3.3 Proof of Proposition 3.2

To save space, we drop time subscripts and superscripts for individual banks throughout this
proof. An equilibrium consists of ratios M/D and A/D, a threshold liquidity shock λ∗, a
multiplier on the worst case collateral constraint γ as well as interest rates iA and iD that
satisfy the definition of the threshold shock (18), banks’ first order conditions for reserves and
other assets (22), the deposit pricing condition (23) and the reserve market clearing condition
(24). Proposition 4.1 implies that the latter condition holds with equality if iF > iM, but may
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hold as a strict inequality otherwise. In addition, equilibrium ratios M/D and A/D must
satisfy (15).

We distinguish elastic equilibria such that the worst case leverage constraint (15) is slack
and γ = 0 from inelastic equilibria such that the worst case leverage constraint binds. We also
note that the deposit rate iD only enters the deposit pricing condition (23). In particular, we
can always find a deposit rate smaller than iS provided that iA < iS. We therefore focus on
determining ratios M/D and A/D together with λ∗ and iA from (18), (22) and (24).

Parts (a) and (b) . Suppose that iF > iM. The market clearing condition for reserves (24)
therefore holds with equality.

The proof proceeds in two steps that consider elastic and inelastic equilibria, respectively.
Step 1 shows that there is a threshold interbank rate iF∗

t such that an elastic equilibrium exists
for all iF ≥ iF∗, and that there is no elastic equilibrium for lower values of iF. Step 2 shows that
there exists an inelastic equilibrium for all iF ≥ iF∗, and that there is no inelastic equilibrium
for higher values of iF. Together these statements imply parts (a) and (b) of the proposition.

Step 1. We first establish that an elastic equilibrium exists only if iF ∈
[
(1− ρF) iS + ρFrM, iS].

Indeed, in an elastic equilibrium, the threshold liquidity shock λ∗ ∈ [−λ̄, λ] must solve the
bank first order condition for reserves (22a) for γ = 0. Such a solution exists if and only if
we can find a number G(λ∗ between zero and one so that (22a) holds. This is because (i)
the threshold shock λ∗ enters the equation only as an argument of G, and (ii) G is strictly
increasing, so that there is a one-to-one mapping between G(λ∗) and λ∗. Rearranging (22a),
G(λ∗) ∈ [0, 1] is equivalent to

0 ≤ 1− ρF

ρF

iS − iF

iF − iM ≤ 1

This condition is in turn is equivalent to iF ∈
[
(1− ρF) iS + ρFrM, iS]. Elastic equilibria exist

only if iF is in this range and we focus on this range from now on.

We now determine all equilibrium objects for a given candidate interbank interest rate iF.
The first order condition (22a) implies a one-to-one mapping between the threshold liquidity
shock and the interbank interest rate. For future reference, we define

f
(

iF
)

:= G−1
(

1− ρF

ρF

iS − iF

iF − iM

)
(A.22)

over the interval
[
(1− ρF) iS + ρFiM, iS] . The function f is strictly decreasing and we have that

f
(
(1− ρF) iS + ρFiM) = λ̄ and f

(
ßS) = −λ̄.

Given a threshold shock λ∗ = f
(
iF), the equilibrium reserve ratio M/D follows from the
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market clearing condition (24); it is always nonnegative. The interest rate on other assets
follows as the solution to the bank first order condition for other assets (22b) with γ = 0. This
solution is always below iS since the term in braces is nonnegative. Finally, the equilibrium
ratio of other assets A/D is determined by the definition of the threshold shock (18).

The ratio A/D is nonnegative provided that λ̄ is sufficiently small. Indeed, for any λ∗, the
solution A/D to (18) is nonnegative if and only if

ρF
1− ρF`

1− ρF

∫ λ∗

−λ̄

(
λ∗ − λ̃

)
dG
(
λ̃
)
+ λ∗ (1− ρF`) < 1 (A.23)

Since G(λ∗) ≤ 1, we have λ∗ ≤ λ̄, this condition holds if λ̄ is sufficiently small, as we assume
in the proposition.

We have now constructed all equilibrium objects given a candidate interbank interest rate
iF
t . To establish existence, it remains to show for which interest rates the ratios M/D and
A/D also satisfy the worst case leverage constraint (15). Conveniently, those ratios enter the
constraint only in the form of the threshold shock λ∗. To see this, express the weighted sum
of collateral ratios in (15) in terms of λ∗ as

`
M
D

+ ρA`
A
D

= 1− (1− ρF`) λ∗ + (1− ρF) `
M
D

= 1− (1− ρF`) λ∗ + (1− ρF`)

(
λ∗G (λ∗)−

∫ λ∗

−λ̄
λ̃dG

(
λ̃
))

= 1− (1− ρF`)

(
λ∗ (1− G (λ∗)) +

∫ λ∗

−λ̄
λ̃dG

(
λ̃
))

=: h (λ∗)

where the first equality uses the definition of the threshold shock λ∗ and the second uses
interbank market clearing (24).

We therefore have that the equilibrium ratios M/D and A/D satisfy the worst case collat-
eral constraint (15) if and only if

h (λ∗) = 1 + λ̄ (1− `) . (A.24)

Since the threshold shock depends on the interest rate iF via (A.22), an elastic equilibrium
exists if and only if

(h ◦ f )
(

iF
)
≤ 1 + λ̄ (1− `) . (A.25)

We now show that there is an interbank interest rate iF∗ such that the existence condition
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(A.25) holds if and only if iF ≥ iF∗. Indeed, the function h is strictly decreasing: we have
h′ (λ∗) = − (1− ρF`) (1− G (λ∗)) < 0. Moreover, we have h

(
−λ̄
)
= 1 + (1− ρF`) λ̄ and

h
(
λ̄
)
= 1, the latter due to our assumption that the mean of λ̃ is zero. The composite function

is strictly increasing in iF with (h ◦ f )
(
(1− ρF) iS + ρFiM) = 1 and

(h ◦ f )
(

iS
)
= 1 + (1− ρF`) λ̄ > 1 + λ̄ (1− `)

It follows that there is a unique threshold funds rate iF∗ ∈
(
iM, iS) . that solves (A.25) with

equality.

We have established the existence of an elastic equilibrium for all iF ≥ iF∗, and we have
shown that there is no elastic equilibrium for lower values of iF.

Step 2. Consider next inelastic equilibria such that the worst case leverage constraint (15)
binds. We again begin by determining the equilibrium objects given a candidate interest
rate iF. The threshold shock λ∗ satisfies (A.24). Moreover, the ratios M/D and A/D must
satisfy the worst case leverage constraint (15) as well as reserve market clearing (24). Since the
function h is decreasing with h(λ̄) = 1, we have λ∗ ≤ λ̄. We thus find a nonnegative M/D
from reserve market clearing (24) and we can solve for a nonnegative A/D from the definition
of the threshold (18) as long as (A.23) holds. Finally, the interest rate on other assets and the
multiplier γ follow from (22).

To establish when an inelastic equilibrium exists, it remains to verify that γ ≥ 0. Suppose
we evaluate the first condition for reserves (22a) at λ∗ defined by (A.24). By construction of
the function f above, we have γ ≥ 0 if and only if λ∗ ≤ f (iF). Indeed, the right hand side
of (22a) is increasing in G(λ∗ and the cdf G is strictly increasing. Using the definition of the
critical interest rate iF∗ in (A.25), the condition λ∗ ≤ f (iF) is equivalent to iF ≤ iF∗.

We have shown that an inelastic equilibrium for all iF ≥ iF∗, and that there is no inelastic
equilibrium for higher values of iF.

Part (c) . Suppose now that iF = iM. The market clearing condition (24) holds as an
inequality. Equilibrium is no longer unique. However, we show that for any candidate reserve
ratio M/D, we can uniquely determine all other equilibrium objects, so the reserve ratio
indexes equilibria. The first order condition for reserves (22a) can only hold if γ > 0 so the
worst case collateral constraint (15) must hold with equality, and determines A/D given M/D.
The threshold shock λ∗ follows from (18). The interest rate iA and the multiplier γ are again
found from (22).

We need A/D to be nonnegative. This implies an upper bound for M/D is `−1 (1 + λ̄ (1− `)
)
.

The lower bound follows from (24). To derive it, we first eliminate A/D from (15) and the def-
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inition of the liquidity threshold (18) to express the reserve-deposit ratio as

M
D

=
(1− ρF`) λ∗ + λ̄ (1− `)

(1− ρF) `
. (A.26)

Now substituting for M/D, we can rewrite market clearing (24) as

∫ λ∗

−λ̄

(
λ∗ − λ̃

)
dG
(
λ̃
)
≤ λ∗ + λ̄

1− `

1− ρF`
(A.27)

We show that the inequality holds if λ∗ is sufficiently large. We then have from (A.26) that it
holds if M/D is sufficiently large

Consider the left hand side (LHS) and right hand side (RHS) of (A.27) as functions of λ∗

on the interval [−λ̄, λ̄]. The LHS is strictly increasing with slope G(λ∗) ≤ 1 and satisfies
LHS(−λ̄) = 0 as well as LHS(λ̄) = λ̄. The RHS is also strictly increasing with slope one and
satisfies RHS(−λ̄) < 0) as well as RHS(λ̄) > λ̄. It follows that there is a unique value λ∗∗

such that market clearing (24) holds if and only if and only if λ∗ ≥ λ∗∗.

It remains to verify that the implied lower bound for M/D is sufficiently small such that a
nonnegative A/D can be determined from (15). We thus require

`
M
D

=
(1− ρF`) λ∗∗ + λ̄ (1− `)

1− ρF
≤ 1 + λ̄ (1− `) ,

which is satisfied as long as λ̄ is sufficiently small since we know that λ∗∗ < λ̄.

Part (d). Suppose iF > iM. When the support bound λ̄ of the liquidity shock distribution
converges to zero, (24) implies that M/D, and hence in particular m, also converges to zero.
The limiting value for A/D then follows from the definition of λ∗ in (18). If instead Suppose
iF = iM, then the worst case collateral constraint (15) binds: taking the limit as λ̄ goes to zero,
we have `M/D + ρA`A/D = 1.�

A.3.4 Derivation of Equation (25

To derive the key linearized equation (25) for an elastic equilibrium with a corridor system,
we start from (22). With a slack leverage constraint, we have γt = 0 and hence the simpler set
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of equations

iS
t − iF

t =
(

iF
t − iM

t

) ρF

1− ρF
G (λ∗t ) ,

iS
t − iA

t =
ρA

ρF

(
iS
t − iF

t

)
. (A.28)

Given the two policy rates, the five equations (A.28), (23) with γt = 0, (24) and the definition
of the threshold shock

λ∗t =
1− ρF`

Mt
Dt
− ρA`

At
Dt

(1− ρF`)

determine five variables: the balance sheet ratios Mt/Dt and At/Dt, the threshold λ∗t and the
interest rates on bank instruments iA

t and iD
t .

We loglinearize the definition of the threshold shock λ∗t and the money market clearing
condition:

λ∗λ̂∗t =
ρA`

1− ρF`

A
D

(
d̂t − ât

)
+

ρF`

1− ρF`

M
D

(
d̂t − m̂t

)
` (1− ρF)

1− ρF`

M
D

(
d̂t − m̂t

)
= −G (λ∗) λ∗λ̂∗t

We can substitute out the endogenous change in the ratio of reserves to deposits M
D

(
d̂− m̂

)
to obtain

1− ρF + ρFG (λ∗)

1− ρF
λ∗λ̂∗t =

ρA`

1− ρF`

A
D

(
d̂t − ât

)
(A.29)

Next, we loglinearize the first order condition for reserves – the first equation in (A.28) –
to find

g(λ?)λ?

G(λ?)
λ̂?

t =
(1 + rF)(δ− rM)

(δ− rF)(rF − rM)

(
iS
t − iF

t

)
− 1 + rM

rF − rM

(
iS
t − iM

t

)
=

(
(1 + rF)(δ− rM)

(δ− rF)(rF − rM)
− 1 + rM

rF − rM

)(
iS
t − iF

t

)
−
(

1 + rM

rF − rM

)(
ıF
t − iM

t

)
=

1 + δ

δ− rF

(
iS
t − iF

t

)
− 1 + rM

rF − rM

(
iF
t − iM

t

)
Again assuming that net rates of return are small decimal numbers we obtain the approxi-

mation
g (λ∗) λ∗

G (λ∗)
λ̂∗t =

iS
t − iF

t
δ− rF −

iF
t − iM

t
rF − rM .
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Substituting for λ∗λ̂∗t from (A.29) now leads to

g (λ∗)
G (λ∗)

1− ρF

1− ρF + ρFG (λ∗)

ρA`

1− ρF`

A
D

(
d̂t − ât

)
=

iS
t − iF

t
δ− rF −

iF
t − iM

t
rF − rM ,

and rearranging delivers equation (25).

A.4 Characterization of steady state with banks

In this section, we prove Proposition 4.1.

A steady state equilibrium consists of a level of output, an inflation rate, a short rate, a
quantity of real balances, and an equilibrium in fixed income markets.

Part (a). Fix an inflation rate π. Market clearing for money requires that demand for real
balances from households equals supply from banks. In an equilibrium with a corridor system
and small λ̄, Proposition 4.2 (d) says that supply is pinned down by bank assets. The steady
state market clearing condition analogous to (5) is therefore

ωη

(
δ + π − iD

1 + δ + π

)−η

Y = ρA`Ar. (A.30)

For any π, there is a unique deposit rate iD that makes this equation hold.

To find policy parameters that generate this deposit rate, we substitute for the spread on
other assets iS− iA in (23) from (26), and use the fact that M/D is small to obtain that δ+π− iD

is proportional to δ + π− iF. It follows that there is a unique iF consistent with money market
clearing. Finally, we can choose iM sufficiently low that this iF is located above iF∗.

Part (b). In an equilibrium with a floor system, the supply of reserves is determined by the
binding worst case leverage constraint (15) together with the government reserve supply rule
(27). Market clearing for money means

ωη

(
δ + π − iD

1 + δ + π

)−η

Y = `Mr + ρA`Ar. (A.31)

For any π and Mr, there is a unique iD that makes this equation hold.

In a floor system, (22) implies that spreads on all assets are proportional to the policy
spread iS − iM. From (23), we then have that δ + π − iD is proportional to δ + π − iM. It
follows that there is a unique iM consistent with money market clearing. �
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